
Robert E Speight

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9173938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chemistry, 2018, 20, 5276-5284.	9.0	302
2	Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. Chemical Engineering Journal, 2017, 312, 336-350.	12.7	267
3	Low carbon fuels and commodity chemicals from waste gases $\hat{a} \in $ systematic approach to understand energy metabolism in a model acetogen. Green Chemistry, 2016, 18, 3020-3028.	9.0	143
4	A Survey of the 2010 Quartz Crystal Microbalance Literature. Journal of Molecular Recognition, 2012, 25, 451-473.	2.1	124
5	Technoeconomic analysis of renewable aviation fuel from microalgae, <i>Pongamia pinnata</i> , and sugarcane. Biofuels, Bioproducts and Biorefining, 2013, 7, 416-428.	3.7	112
6	Closing the textile loop: Enzymatic fibre separation and recycling of wool/polyester fabric blends. Waste Management, 2020, 102, 149-160.	7.4	83
7	Direct and Quantitative Detection of Bacteriophage by "Hearing―Surface Detachment Using a Quartz Crystal Microbalance. Analytical Chemistry, 2001, 73, 3935-3939.	6.5	67
8	The salt dependence of DNA recognition by NF-kappaB p50: a detailed kinetic analysis of the effects on affinityand specificity. Nucleic Acids Research, 1999, 27, 1063-1069.	14.5	61
9	Understanding the dynamics of keratin weakening and hydrolysis by proteases. PLoS ONE, 2018, 13, e0202608.	2.5	56
10	Effect of Plasmid Design and Type of Integration Event on Recombinant Protein Expression in Pichia pastoris. Applied and Environmental Microbiology, 2018, 84, .	3.1	54
11	Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst. Microbial Cell Factories, 2010, 9, 24.	4.0	47
12	Challenges and Opportunities in Identifying and Characterising Keratinases for Value-Added Peptide Production. Catalysts, 2020, 10, 184.	3.5	39
13	Identification of broad specificity P450CAM variants by primary screening against indole as substrate. Chemical Communications, 2005, , 3652.	4.1	36
14	Two Gut-Associated Yeasts in a Tephritid Fruit Fly have Contrasting Effects on Adult Attraction and Larval Survival. Journal of Chemical Ecology, 2017, 43, 891-901.	1.8	36
15	Preparative deracemization of unnatural amino acids. Biochemical Society Transactions, 2006, 34, 287.	3.4	35
16	Highâ€Performance Plasmaâ€Enabled Biorefining of Microalgae to Valueâ€Added Products. ChemSusChem, 2019, 12, 4976-4985.	6.8	32
17	Disulfide bond engineering of AppA phytase for increased thermostability requires co-expression of protein disulfide isomerase in Pichia pastoris. Biotechnology for Biofuels, 2021, 14, 80.	6.2	30
18	Probiotic Bacillus amyloliquefaciens H57 ameliorates subclinical necrotic enteritis in broiler chicks by maintaining intestinal mucosal integrity and improving feed efficiency. Poultry Science, 2020, 99, 4278-4293.	3.4	28

ROBERT E SPEIGHT

#	Article	IF	CITATIONS
19	Filamentous fungi for future functional food and feed. Current Opinion in Biotechnology, 2022, 76, 102729.	6.6	28
20	A new plasmid display technology for the in vitro selection of functional phenotype–genotype linked proteins. Chemistry and Biology, 2001, 8, 951-965.	6.0	27
21	Enantioselective epoxidation of linolenic acid catalysed by cytochrome P450BM3 from Bacillus megaterium. Organic and Biomolecular Chemistry, 2005, 3, 2688.	2.8	27
22	Engineering Enzyme Properties for Improved Biocatalytic Processes in Batch and Continuous Flow. Organic Process Research and Development, 2022, 26, 1914-1924.	2.7	24
23	Improved fermentation efficiency of S. cerevisiae by changing glycolytic metabolic pathways with plasma agitation. Scientific Reports, 2018, 8, 8252.	3.3	23
24	Analysis of the NF-κB p50 dimer interface by diversity screening 1 1Edited by J. Wells. Journal of Molecular Biology, 2001, 310, 563-575.	4.2	22
25	Prussian blue analogue nanoenzymes mitigate oxidative stress and boost bio-fermentation. Nanoscale, 2019, 11, 19497-19505.	5.6	22
26	Wastes to profit: a circular economy approach to value-addition in livestock industries. Animal Production Science, 2021, 61, 541.	1.3	22
27	Insights into amoxicillin degradation in water by non-thermal plasmas. Chemosphere, 2022, 291, 132757.	8.2	21
28	Bactericidal Silver Nanoparticles by Atmospheric Pressure Solution Plasma Processing. Nanomaterials, 2020, 10, 874.	4.1	20
29	Coâ€utilization of acidified glycerol pretreatedâ€sugarcane bagasse for microbial oil production by a novel <i>Rhodosporidium</i> strain. Engineering in Life Sciences, 2019, 19, 217-228.	3.6	19
30	Efficient production of fructo-oligosaccharides from sucrose and molasses by a novel Aureobasidium pullulan strain. Biochemical Engineering Journal, 2020, 163, 107747.	3.6	18
31	Integral Membrane Fatty Acid Desaturases: A Review of Biochemical, Structural, and Biotechnological Advances. European Journal of Lipid Science and Technology, 2020, 122, 2000181.	1.5	15
32	Towards commercial levels of astaxanthin production in Phaffia rhodozyma. Journal of Biotechnology, 2022, 350, 42-54.	3.8	14
33	Rapid identification of cytochrome P450cam variants by in vivo screening of active site libraries. Tetrahedron: Asymmetry, 2004, 15, 2829-2831.	1.8	13
34	An improved and general streamlined phylogenetic protocol applied to the fatty acid desaturase family. Molecular Phylogenetics and Evolution, 2017, 115, 50-57.	2.7	13
35	High-level expression of Rhodotorula gracilis d-amino acid oxidase in Pichia pastoris. Biotechnology Letters, 2011, 33, 557-563.	2.2	12
36	Cloning, expression, characterisation and mutational analysis of l-aspartate oxidase from Pseudomonas putida. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 17-22.	1.8	12

ROBERT E SPEIGHT

#	Article	IF	CITATIONS
37	A snapshot of microbial diversity and function in an undisturbed sugarcane bagasse pile. BMC Biotechnology, 2020, 20, 12.	3.3	12
38	Biorefining within food loss and waste frameworks: A review. Renewable and Sustainable Energy Reviews, 2022, 154, 111781.	16.4	12
39	Genomic organisation, activity and distribution analysis of the microbial putrescine oxidase degradation pathway. Systematic and Applied Microbiology, 2013, 36, 457-466.	2.8	11
40	Synergistic optimisation of expression, folding, and secretion improves E. coli AppA phytase production in Pichia pastoris. Microbial Cell Factories, 2021, 20, 8.	4.0	11
41	Effects of dissolved oxygen availability and culture biomass at induction upon the intracellular expression of monoamine oxidase by recombinant E. coli in fed batch bioprocesses. Process Biochemistry, 2011, 46, 721-729.	3.7	10
42	Yeasts Influence Host Selection and Larval Fitness in Two Frugivorous Carpophilus Beetle Species. Journal of Chemical Ecology, 2020, 46, 675-687.	1.8	10
43	Identification, functional expression and kinetic analysis of two primary amine oxidases from Rhodococcus opacus. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 73-82.	1.8	8
44	The repertoire of nitrogen assimilation in <i>Rhodococcus</i> : catalysis, pathways and relevance in biotechnology and bioremediation. Journal of Chemical Technology and Biotechnology, 2014, 89, 787-802.	3.2	8
45	Valorization of sugarcane biorefinery residues using fungal biocatalysis. Biomass Conversion and Biorefinery, 2022, 12, 997-1011.	4.6	8
46	Highly efficient production of transfructosylating enzymes using low-cost sugarcane molasses by A. pullulans FRR 5284. Bioresources and Bioprocessing, 2021, 8, .	4.2	8
47	High-Efficiency Biocatalytic Conversion of Thebaine to Codeine. ACS Omega, 2020, 5, 9339-9347.	3.5	7
48	Comparison of spray-drying and freeze-drying for inoculum production of the probiotic Bacillus amyloliquefaciens strain H57. Food and Bioproducts Processing, 2021, 130, 121-131.	3.6	7
49	Future fashion, biotechnology and the living world: microbial cell factories and forming new â€~oddkins'. Continuum, 2021, 35, 897-913.	0.9	7
50	Valorisation of keratin waste: Controlled pretreatment enhances enzymatic production of antioxidant peptides. Journal of Environmental Management, 2022, 301, 113945.	7.8	7
51	Distamycin A affects the stability of NF-?B p50-DNA complexes in a sequence-dependent manner. Journal of Molecular Recognition, 2002, 15, 19-26.	2.1	6
52	Cell-free pipeline for discovery of thermotolerant xylanases and endo -1,4-β-glucanases. Journal of Biotechnology, 2017, 259, 191-198.	3.8	6
53	Effect of multi-modal environmental stress on dose-dependent cytotoxicity of nanodiamonds in Saccharomyces cerevisiae cells. Sustainable Materials and Technologies, 2019, 22, e00123.	3.3	6
54	Antimicrobial adhesive films by plasma-enabled polymerisation of m-cresol. Scientific Reports, 2022, 12, 7560.	3.3	6

ROBERT E SPEIGHT

#	Article	IF	CITATIONS
55	Role of amine oxidase expression to maintain putrescine homeostasis in Rhodococcus opacus. Enzyme and Microbial Technology, 2013, 52, 286-295.	3.2	5
56	Platforms to accelerate biomanufacturing of enzyme and probiotic animal feed supplements: discovery considerations and manufacturing implications. Animal Production Science, 2022, 62, 1113-1128.	1.3	5
57	Biogas, Bioreactors and Bacterial Methane Oxidation. , 2018, , 213-235.		4
58	Enzyme systems for effective dag removal from cattle hides. Animal Production Science, 2019, 59, 1387.	1.3	4
59	Enzymatic removal of dags from livestock: an agricultural application of enzyme technology. Applied Microbiology and Biotechnology, 2020, 104, 5739-5748.	3.6	3
60	Transformation of sugarcane molasses into fructooligosaccharides with enhanced prebiotic activity using whole-cell biocatalysts from Aureobasidium pullulans FRR 5284 and an invertase-deficient Saccharomyces cerevisiae 1403-7A. Bioresources and Bioprocessing, 2021, 8, .	4.2	3
61	Matching the biomass to the bioproduct. ChemistrySelect, 2016, 1, .	1.5	2
62	1. Matching the biomass to the bioproduct. , 2016, , 1-44.		2
63	Novel Biocatalyst Technology for the Preparation of Chiral Amines. ChemInform, 2005, 36, no.	0.0	1
64	Chemo-Radiative Stress of Plasma as a Modulator of Charge-Dependent Nanodiamond Cytotoxicity. ACS Applied Bio Materials, 2020, 3, 7202-7210.	4.6	1