## Jaswinder K Sethi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9171627/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Non-alcoholic fatty liver disease: a multi-system disease influenced by ageing and sex, and affected by adipose tissue and intestinal function. Proceedings of the Nutrition Society, 2022, 81, 146-161.                             | 1.0  | 17        |
| 2  | The Immunometabolic Roles of Various Fatty Acids in Macrophages and Lymphocytes. International<br>Journal of Molecular Sciences, 2021, 22, 8460.                                                                                     | 4.1  | 19        |
| 3  | Endocytosis in the placenta: An undervalued mediator of placental transfer. Placenta, 2021, 113, 67-73.                                                                                                                              | 1.5  | 14        |
| 4  | Growth differentiation factor-15 and the association between type 2 diabetes and liver fibrosis in NAFLD. Nutrition and Diabetes, 2021, 11, 32.                                                                                      | 3.2  | 13        |
| 5  | Metabolic Messengers: tumour necrosis factor. Nature Metabolism, 2021, 3, 1302-1312.                                                                                                                                                 | 11.9 | 155       |
| 6  | Palmitoleic acid reduces high fat diet-induced liver inflammation by promoting PPAR-γ-independent M2a<br>polarization of myeloid cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids,<br>2020, 1865, 158776. | 2.4  | 23        |
| 7  | Synbiotics Alter Fecal Microbiomes, But Not Liver Fat or Fibrosis, in a Randomized Trial of Patients<br>With Nonalcoholic Fatty Liver Disease. Gastroenterology, 2020, 158, 1597-1610.e7.                                            | 1.3  | 123       |
| 8  | Inflammation-linked adaptations in dermal microvascular reactivity accompany the development of obesity and type 2 diabetes. International Journal of Obesity, 2019, 43, 556-566.                                                    | 3.4  | 11        |
| 9  | Immunometabolic Links between Estrogen, Adipose Tissue and Female Reproductive Metabolism.<br>Biology, 2019, 8, 8.                                                                                                                   | 2.8  | 24        |
| 10 | Nutritional Targeting of Cancer Cell Metabolism in Obesity. Journal of Nutrition, 2018, 148, 1207-1208.                                                                                                                              | 2.9  | 0         |
| 11 | Extracellular nicotinamide phosphoribosyltransferase, a new cancer <i>metabokine</i> . British<br>Journal of Pharmacology, 2016, 173, 2182-2194.                                                                                     | 5.4  | 92        |
| 12 | Women in Metabolism: Part 3. Cell Metabolism, 2015, 22, 949-953.                                                                                                                                                                     | 16.2 | 0         |
| 13 | Hematopoietic IKBKE limits the chronicity of inflammasome priming and metaflammation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 506-511.                                           | 7.1  | 30        |
| 14 | Go-6976 Reverses Hyperglycemia-Induced Insulin Resistance Independently of cPKC Inhibition in<br>Adipocytes. PLoS ONE, 2014, 9, e108963.                                                                                             | 2.5  | 3         |
| 15 | Adaptive Changes of the Insig1/SREBP1/SCD1 Set Point Help Adipose Tissue to Cope With Increased Storage Demands of Obesity. Diabetes, 2013, 62, 3697-3708.                                                                           | 0.6  | 76        |
| 16 | Increasing Circulating IGFBP1 Levels Improves Insulin Sensitivity, Promotes Nitric Oxide Production,<br>Lowers Blood Pressure, and Protects Against Atherosclerosis. Diabetes, 2012, 61, 915-924.                                    | 0.6  | 96        |
| 17 | The Role of the Cullin-5 E3 Ubiquitin Ligase in the Regulation of Insulin Receptor Substrate-1.<br>Biochemistry Research International, 2012, 2012, 1-8.                                                                             | 3.3  | 2         |
| 18 | A New Role for Lipocalin Prostaglandin D Synthase in the Regulation of Brown Adipose Tissue Substrate Utilization. Diabetes, 2012, 61, 3139-3147.                                                                                    | 0.6  | 48        |

JASWINDER K SETHI

| #  | Article                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Lipocalin Prostaglandin D Synthase and PPARÎ <sup>3</sup> 2 Coordinate to Regulate Carbohydrate and Lipid<br>Metabolism In Vivo. PLoS ONE, 2012, 7, e39512.                    | 2.5  | 19        |
| 20 | Differential Lipid Partitioning Between Adipocytes and Tissue Macrophages Modulates Macrophage Lipotoxicity and M2/M1 Polarization in Obese Mice. Diabetes, 2011, 60, 797-809. | 0.6  | 297       |
| 21 | Adipose Tissue Development, Structure and Function. , 2011, , 53-68.                                                                                                           |      | Ο         |
| 22 | Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity. International Journal of Obesity, 2010, 34, 1695-1705.           | 3.4  | 78        |
| 23 | LEM-PCR: a method for determining relative transcript isoform proportions using real-time PCR without a standard curve. Genome, 2010, 53, 637-642.                             | 2.0  | 7         |
| 24 | Activatin' Human Adipose Progenitors in Obesity. Diabetes, 2010, 59, 2354-2357.                                                                                                | 0.6  | 21        |
| 25 | Wnt signalling and the control of cellular metabolism. Biochemical Journal, 2010, 427, 1-17.                                                                                   | 3.7  | 196       |
| 26 | 11β-Hydroxysteroid Dehydrogenase Type 1 Regulates Glucocorticoid-Induced Insulin Resistance in<br>Skeletal Muscle. Diabetes, 2009, 58, 2506-2515.                              | 0.6  | 146       |
| 27 | <i>Dact1</i> , a Nutritionally Regulated Preadipocyte Gene, Controls Adipogenesis by Coordinating the Wnt/β-Catenin Signaling Network. Diabetes, 2009, 58, 609-619.            | 0.6  | 84        |
| 28 | Adipogenesis and WNT signalling. Trends in Endocrinology and Metabolism, 2009, 20, 16-24.                                                                                      | 7.1  | 491       |
| 29 | Activation of βâ€catenin signalling by CSKâ€3 inhibition increases pâ€glycoprotein expression in brain<br>endothelial cells. Journal of Neurochemistry, 2008, 106, 1855-1865.  | 3.9  | 134       |
| 30 | TNFâ $\in \hat{I}_{\pm}$ and adipocyte biology. FEBS Letters, 2008, 582, 117-131.                                                                                              | 2.8  | 624       |
| 31 | Wnt signalling at the crossroads of nutritional regulation. Biochemical Journal, 2008, 416, e11-e13.                                                                           | 3.7  | 12        |
| 32 | Pharmacological Inhibition of Glucosylceramide Synthase Enhances Insulin Sensitivity. Diabetes, 2007, 56, 1341-1349.                                                           | 0.6  | 280       |
| 33 | Thematic review series: Adipocyte Biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. Journal of Lipid Research, 2007, 48, 1253-1262.          | 4.2  | 445       |
| 34 | IGF-Binding Protein-2 Protects Against the Development of Obesity and Insulin Resistance. Diabetes, 2007, 56, 285-294.                                                         | 0.6  | 231       |
| 35 | Targeting Fat to Prevent Diabetes. Cell Metabolism, 2007, 5, 323-325.                                                                                                          | 16.2 | 17        |
| 36 | IGF binding protein 1 protects against obesity induced insulin resistance at a whole body level and in the vascular wall. Atherosclerosis, 2007, 193, S2.                      | 0.8  | 0         |

JASWINDER K SETHI

| #  | Article                                                                                                                                                                                               | IF       | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 37 | Tumour necrosis factor-α inhibits adipogenesis via a β-catenin/TCF4(TCF7L2)-dependent pathway. Cell<br>Death and Differentiation, 2007, 14, 1361-1373.                                                | 11.2     | 196          |
| 38 | Is PBEF/visfatin/Nampt an authentic adipokine relevant to the metabolic syndrome?. Current<br>Hypertension Reports, 2007, 9, 33-38.                                                                   | 3.5      | 39           |
| 39 | WNT10B mutations in human obesity. Diabetologia, 2006, 49, 678-684.                                                                                                                                   | 6.3      | 127          |
| 40 | Regulation of Insulin Receptor Substrate 1 Pleckstrin Homology Domain by Protein Kinase C: Role of<br>Serine 24 Phosphorylation. Molecular Endocrinology, 2006, 20, 1838-1852.                        | 3.7      | 49           |
| 41 | The Wnt antagonist Dickkopf-1 and its receptors are coordinately regulated during early human adipogenesis. Journal of Cell Science, 2006, 119, 2613-2620.                                            | 2.0      | 138          |
| 42 | The Link Between Nutritional Status and Insulin Sensitivity Is Dependent on the Adipocyte-Specific Peroxisome Proliferator-Activated Receptor-Â2 Isoform. Diabetes, 2005, 54, 1706-1716.              | 0.6      | 157          |
| 43 | The Peroxisome Proliferator-activated Receptor-Î <sup>3</sup> Regulates Murine Pyruvate Carboxylase Gene<br>Expression in Vivo and in Vitro. Journal of Biological Chemistry, 2005, 280, 27466-27476. | 3.4      | 74           |
| 44 | Visfatin: the missing link between intra-abdominal obesity and diabetes?. Trends in Molecular Medicine, 2005, 11, 344-347.                                                                            | 6.7      | 238          |
| 45 | Role of the POZ Zinc Finger Transcription Factor FBI-1 in Human and Murine Adipogenesis. Journal of<br>Biological Chemistry, 2004, 279, 11711-11718.                                                  | 3.4      | 46           |
| 46 | ETO/MTG8 Is an Inhibitor of C/EBPÎ <sup>2</sup> Activity and a Regulator of Early Adipogenesis. Molecular and Cellular Biology, 2004, 24, 9863-9872.                                                  | 2.3      | 75           |
| 47 | Signalling activity of beta-catenin targeted to different subcellular compartments. Biochemical<br>Journal, 2004, 379, 471-477.                                                                       | 3.7      | 40           |
| 48 | Characterization of the human, mouse and rat PGC1beta (peroxisome-proliferator-activated) Tj ETQq0 0 0 rgBT /                                                                                         | Overlock | 10 Tf 50 302 |
| 49 | Â-Adrenergic Regulation of IL-6 Release from Adipose Tissue: In Vivo and in Vitro Studies. Journal of<br>Clinical Endocrinology and Metabolism, 2001, 86, 5864-5869.                                  | 3.6      | 139          |
| 50 | Characterisation of receptor-specific TNFα functions in adipocyte cell lines lacking type 1 and 2 TNF receptors. FEBS Letters, 2000, 469, 77-82.                                                      | 2.8      | 67           |
| 51 | Transmembrane Tumor Necrosis Factor (TNF)-α Inhibits Adipocyte Differentiation by Selectively<br>Activating TNF Receptor 1. Journal of Biological Chemistry, 1999, 274, 26287-26295.                  | 3.4      | 130          |
| 52 | The role of TNFα in adipocyte metabolism. Seminars in Cell and Developmental Biology, 1999, 10, 19-29.                                                                                                | 5.0      | 370          |
| 53 | 7-Deaza-8-bromo-cyclic ADP-ribose, the First Membrane-permeant, Hydrolysis-resistant Cyclic<br>ADP-ribose Antagonist. Journal of Biological Chemistry, 1997, 272, 16358-16363.                        | 3.4      | 73           |

54Roles for Adenosine Ribose Hydroxyl Groups in Cyclic Adenosine 5â€~-Diphosphate Ribose-Mediated Ca2+<br/>Release. Biochemistry, 1997, 36, 9509-9517.2.556

JASWINDER K SETHI

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis of 7-deaza-8-bromo cyclic adenosine $5\hat{a}\in^2$ -diphosphate ribose: the first hydrolysis resistant antagonist at the cADPR receptor. Chemical Communications, 1997, , 695-696.   | 4.1 | 20        |
| 56 | 7-Deaza cyclic adenosine 5′-diphosphate ribose: first example of a Ca2+-mobilizing partial agonist<br>related to cyclic adenosine 5′-diphosphate ribose. Chemistry and Biology, 1997, 4, 51-61. | 6.0 | 49        |
| 57 | Nicotinamide inhibits cyclic ADP-ribose-mediated calcium signalling in sea urchin eggs. Biochemical<br>Journal, 1996, 319, 613-617.                                                             | 3.7 | 88        |
| 58 | Nitric Oxide-induced Mobilization of Intracellular Calcium via the Cyclic ADP-ribose Signaling<br>Pathway. Journal of Biological Chemistry, 1996, 271, 3699-3705.                               | 3.4 | 192       |
| 59 | Effect of dietary fat on the in vitro hepatotoxicity of paracetamol. Biochemical Pharmacology, 1992, 44, 1303-1306.                                                                             | 4.4 | 7         |
| 60 | Effect of paracetamol on mitochondrial membrane function in rat liver slices. Biochemical Pharmacology, 1991, 42, 931-936.                                                                      | 4.4 | 33        |