## William B Reeves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/91703/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Angiopoietins as Prognostic Markers for Future Kidney Disease and Heart Failure Events after Acute<br>Kidney Injury. Journal of the American Society of Nephrology: JASN, 2022, 33, 613-627.                                                  | 6.1  | 16        |
| 2  | SARS-CoV-2 infection enhances mitochondrial PTP complex activity to perturb cardiac energetics.<br>IScience, 2022, 25, 103722.                                                                                                                | 4.1  | 27        |
| 3  | Considerations in Controlling for Urine Concentration for Biomarkers of Kidney Disease<br>Progression After Acute Kidney Injury. Kidney International Reports, 2022, 7, 1502-1513.                                                            | 0.8  | 5         |
| 4  | A prospective cohort study of acute kidney injury and kidney outcomes, cardiovascularÂevents, and<br>death. Kidney International, 2021, 99, 456-465.                                                                                          | 5.2  | 72        |
| 5  | Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nature Reviews Nephrology, 2021, 17, 319-334.                                                                                                                         | 9.6  | 244       |
| 6  | Lactate Elicits ER-Mitochondrial Mg2+ Dynamics to Integrate Cellular Metabolism. Cell, 2020, 183,<br>474-489.e17.                                                                                                                             | 28.9 | 84        |
| 7  | IL-10 from dendritic cells but not from T regulatory cells protects against cisplatin-induced nephrotoxicity. PLoS ONE, 2020, 15, e0238816.                                                                                                   | 2.5  | 16        |
| 8  | Post–Acute Kidney Injury Proteinuria and Subsequent Kidney Disease Progression. JAMA Internal<br>Medicine, 2020, 180, 402.                                                                                                                    | 5.1  | 98        |
| 9  | Mitochondrial pyruvate and fatty acid flux modulate MICU1-dependent control of MCU activity.<br>Science Signaling, 2020, 13, .                                                                                                                | 3.6  | 48        |
| 10 | Selective inhibition of arginase-2 in endothelial cells but not proximal tubules reduces renal fibrosis.<br>JCI Insight, 2020, 5, .                                                                                                           | 5.0  | 14        |
| 11 | Effects of General Anesthesia on 2 Urinary Biomarkers of Kidney Injury—Hepatitis A Virus Cellular<br>Receptor 1 and Lipocalin 2—in Male C57BL/6J Mice. Journal of the American Association for Laboratory<br>Animal Science, 2019, 58, 21-29. | 1.2  | 4         |
| 12 | INNATE IMMUNITY IN NEPHROTOXIC ACUTE KIDNEY INJURY. Transactions of the American Clinical and Climatological Association, 2019, 130, 33-40.                                                                                                   | 0.5  | 3         |
| 13 | Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced<br>acuteÂkidney injury. Kidney International, 2018, 93, 365-374.                                                                                  | 5.2  | 116       |
| 14 | The sweetest thing: blocking fructose metabolism to prevent acute kidney injury?. Kidney<br>International, 2017, 91, 998-1000.                                                                                                                | 5.2  | 4         |
| 15 | Podocyte-specific chemokine (C-C motif) receptor 2Âoverexpression mediates diabetic renal injury<br>inÂmice. Kidney International, 2017, 91, 671-682.                                                                                         | 5.2  | 27        |
| 16 | Arginase-2 mediates renal ischemia-reperfusion injury. American Journal of Physiology - Renal<br>Physiology, 2017, 313, F522-F534.                                                                                                            | 2.7  | 20        |
| 17 | Neutrophils in cisplatin AKI—mediator or marker?. Kidney International, 2017, 92, 11-13.                                                                                                                                                      | 5.2  | 13        |
| 18 | Calorimetric Biosensing System for Quantification of Urinary Creatinine. ACS Sensors, 2017, 2, 796-802.                                                                                                                                       | 7.8  | 19        |

2

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Emerging Cytokine Biosensors with Optical Detection Modalities and Nanomaterial-Enabled Signal Enhancement. Sensors, 2017, 17, 428.                                                                                                               | 3.8 | 41        |
| 20 | Storage Time and Urine Biomarker Levels in the ASSESS-AKI Study. PLoS ONE, 2016, 11, e0164832.                                                                                                                                                    | 2.5 | 18        |
| 21 | Of mice and women: do sex-dependent responses to ischemia-reperfusion injury in rodents have implications for delayed graft function in humans?. Kidney International, 2016, 90, 10-13.                                                           | 5.2 | 4         |
| 22 | Ultratrace level determination and quantitative analysis of kidney injury biomarkers in patient samples attained by zinc oxide nanorods. Nanoscale, 2016, 8, 4613-4622.                                                                           | 5.6 | 18        |
| 23 | Dendritic Cell Protection from Cisplatin Nephrotoxicity Is Independent of Neutrophils. Toxins, 2015, 7, 3245-3256.                                                                                                                                | 3.4 | 25        |
| 24 | Macrophage-derived tumor necrosis factor-α mediates diabetic renal injury. Kidney International, 2015,<br>88, 722-733.                                                                                                                            | 5.2 | 143       |
| 25 | Remote calorimetric detection of urea via flow injection analysis. Analyst, The, 2015, 140, 8033-8040.                                                                                                                                            | 3.5 | 22        |
| 26 | NODding off in acute kidney injury with progranulin?. Kidney International, 2015, 87, 873-875.                                                                                                                                                    | 5.2 | 4         |
| 27 | Myeloid-Derived Tissue-Type Plasminogen Activator Promotes Macrophage Motility through FAK, Rac1, and NF-κB Pathways. American Journal of Pathology, 2014, 184, 2757-2767.                                                                        | 3.8 | 22        |
| 28 | Urine Stability Studies for Novel Biomarkers of Acute KidneyÂlnjury. American Journal of Kidney<br>Diseases, 2014, 63, 567-572.                                                                                                                   | 1.9 | 59        |
| 29 | TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1. Journal of Clinical<br>Investigation, 2014, 124, 4989-5001.                                                                                                                | 8.2 | 93        |
| 30 | TNF-α mediates increased susceptibility to ischemic AKI in diabetes. American Journal of Physiology -<br>Renal Physiology, 2013, 304, F515-F521.                                                                                                  | 2.7 | 63        |
| 31 | Macrophages directly mediate diabetic renal injury. American Journal of Physiology - Renal Physiology,<br>2013, 305, F1719-F1727.                                                                                                                 | 2.7 | 122       |
| 32 | Protective role of small pigment epithelium-derived factor (PEDF) peptide in diabetic renal injury.<br>American Journal of Physiology - Renal Physiology, 2013, 305, F891-F900.                                                                   | 2.7 | 20        |
| 33 | Therapeutic Modalities in Diabetic Nephropathy: Standard and Emerging Approaches. Journal of<br>General Internal Medicine, 2012, 27, 458-468.                                                                                                     | 2.6 | 46        |
| 34 | Impact of Computerized Order Entry and Pre-mixed Dialysis Solutions for Continuous Veno-Venous<br>Hemodiafiltration on Selection of Therapy for Acute Renal Failure. Journal of Medical Systems, 2012,<br>36, 223-231.                            | 3.6 | 0         |
| 35 | Villin and actin in the mouse kidney brush-border membrane bind to and are degraded by meprins, an<br>interaction that contributes to injury in ischemia-reperfusion. American Journal of Physiology - Renal<br>Physiology, 2011, 301, F871-F882. | 2.7 | 25        |
| 36 | The assessment, serial evaluation, and subsequent sequelae of acute kidney injury (ASSESS-AKI) study:<br>design and methods. BMC Nephrology, 2010, 11, 22.                                                                                        | 1.8 | 139       |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Quantitative analysis of creatinine in urine by metalized nanostructured parylene. Journal of<br>Biomedical Optics, 2010, 15, 027004.                                                                 | 2.6 | 40        |
| 38 | Endogenous IL-10 Attenuates Cisplatin Nephrotoxicity: Role of Dendritic Cells. Journal of Immunology, 2010, 185, 4904-4911.                                                                           | 0.8 | 88        |
| 39 | Renal Dendritic Cells Ameliorate Nephrotoxic Acute Kidney Injury. Journal of the American Society of<br>Nephrology: JASN, 2010, 21, 53-63.                                                            | 6.1 | 130       |
| 40 | Mechanisms of Cisplatin Nephrotoxicity. Toxins, 2010, 2, 2490-2518.                                                                                                                                   | 3.4 | 1,235     |
| 41 | tPA Activates LDL Receptor-Related Protein 1-Mediated Mitogenic Signaling Involving the p90RSK and GSK3β Pathway. American Journal of Pathology, 2010, 177, 1687-1696.                                | 3.8 | 32        |
| 42 | Meprin A metalloproteases enhance renal damage and bladder inflammation after LPS challenge.<br>American Journal of Physiology - Renal Physiology, 2009, 296, F135-F144.                              | 2.7 | 45        |
| 43 | Netrin-1 increases proliferation and migration of renal proximal tubular epithelial cells via the UNC5B receptor. American Journal of Physiology - Renal Physiology, 2009, 296, F723-F729.            | 2.7 | 52        |
| 44 | Netrin-1 Overexpression Protects Kidney from Ischemia Reperfusion Injury by Suppressing Apoptosis.<br>American Journal of Pathology, 2009, 175, 1010-1018.                                            | 3.8 | 68        |
| 45 | TLR4 Signaling Mediates Inflammation and Tissue Injury in Nephrotoxicity. Journal of the American<br>Society of Nephrology: JASN, 2008, 19, 923-932.                                                  | 6.1 | 269       |
| 46 | Netrin-1 and kidney injury. I. Netrin-1 protects against ischemia-reperfusion injury of the kidney.<br>American Journal of Physiology - Renal Physiology, 2008, 294, F739-F747.                       | 2.7 | 113       |
| 47 | Ultrasensitive Detection of Cytokines Enabled by Nanoscale ZnO Arrays. Analytical Chemistry, 2008, 80, 6594-6601.                                                                                     | 6.5 | 66        |
| 48 | Targeted disruption of the meprin metalloproteinase β gene protects against renal<br>ischemia-reperfusion injury in mice. American Journal of Physiology - Renal Physiology, 2008, 294,<br>F480-F490. | 2.7 | 49        |
| 49 | Netrin-1 and kidney injury. II. Netrin-1 is an early biomarker of acute kidney injury. American Journal of<br>Physiology - Renal Physiology, 2008, 294, F731-F738.                                    | 2.7 | 105       |
| 50 | Sodium Chloride Transport in the Loop of Henle, Distal Convoluted Tubule, and Collecting Duct. , 2008, , 849-887.                                                                                     |     | 4         |
| 51 | Endotoxin and cisplatin synergistically induce renal dysfunction and cytokine production in mice.<br>American Journal of Physiology - Renal Physiology, 2007, 293, F325-F332.                         | 2.7 | 88        |
| 52 | Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor- $\hat{l}\pm$ produced by renal parenchymal cells. Kidney International, 2007, 72, 37-44.                                       | 5.2 | 251       |
| 53 | Endotoxin and cisplatin synergistically stimulate TNF-α production by renal epithelial cells. American<br>Journal of Physiology - Renal Physiology, 2007, 292, F812-F819.                             | 2.7 | 54        |
| 54 | Meprin metalloproteases play a role in host response to urinary tract infection. FASEB Journal, 2007, 21, A279.                                                                                       | 0.5 | 0         |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Cisplatin Increases TNF-α mRNA Stability in Kidney Proximal Tubule Cells. Renal Failure, 2006, 28, 583-592.                                                                                                              | 2.1  | 36        |
| 56 | Targeted disruption of the meprin beta gene results in decreased renal ischemia/reperfusion injury in mice. FASEB Journal, 2006, 20, .                                                                                   | 0.5  | 0         |
| 57 | p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. American Journal of Physiology<br>- Renal Physiology, 2005, 289, F166-F174.                                                                      | 2.7  | 230       |
| 58 | Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-α. Kidney<br>International, 2004, 65, 490-498.                                                                                        | 5.2  | 175       |
| 59 | Inflammatory cytokines in acute renal failure. Kidney International, 2004, 66, S56-S61.                                                                                                                                  | 5.2  | 161       |
| 60 | TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. American Journal of<br>Physiology - Renal Physiology, 2003, 285, F610-F618.                                                              | 2.7  | 237       |
| 61 | TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. Journal of Clinical Investigation, 2002, 110, 835-842.                                                                    | 8.2  | 370       |
| 62 | TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. Journal of Clinical Investigation, 2002, 110, 835-842.                                                                    | 8.2  | 673       |
| 63 | Chloride Channels in the Loop of Henle. Annual Review of Physiology, 2001, 63, 631-645.                                                                                                                                  | 13.1 | 29        |
| 64 | Cl â^' Channels in Basolateral TAL Membranes XV. Molecular Heterogeneity Between Cortical and<br>Medullary Channels. Journal of Membrane Biology, 2000, 177, 221-230.                                                    | 2.1  | 9         |
| 65 | Effects of chloride channel inhibitors on H <sub>2</sub> O <sub>2</sub> -induced renal epithelial cell<br>injury. American Journal of Physiology - Renal Physiology, 2000, 278, F83-F90.                                 | 2.7  | 15        |
| 66 | Transforming growth factor β contributes to progressive diabetic nephropathy. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7667-7669.                                      | 7.1  | 214       |
| 67 | <i>Ehrlichia chaffeensis</i> in a Renal Transplant Recipient. American Journal of Nephrology, 1999, 19, 674-676.                                                                                                         | 3.1  | 27        |
| 68 | Inhibition of PARP prevents oxidant-induced necrosis but not apoptosis in LLC-PK <sub>1</sub> cells.<br>American Journal of Physiology - Renal Physiology, 1999, 277, F428-F436.                                         | 2.7  | 48        |
| 69 | Developmental expression of sodium entry pathways in rat nephron. American Journal of Physiology -<br>Renal Physiology, 1999, 276, F367-F381.                                                                            | 2.7  | 91        |
| 70 | Cl- channels in basolateral TAL membranes: XIII. Heterogeneity between basolateral MTAL and CTAL Cl-<br>channels. Kidney International, 1999, 55, 593-601.                                                               | 5.2  | 13        |
| 71 | Cl- channels in basolateral TAL membranes. XIV. Kinetic properties of a basolateral MTAL Cl- channel.<br>Kidney International, 1999, 55, 1444-1449.                                                                      | 5.2  | 8         |
| 72 | Cl <sup>â^'</sup> channels in basolateral renal medullary membranes XII. Anti-rbClC-Ka antibody blocks<br>MTAL Cl <sup>â^'</sup> channels. American Journal of Physiology - Renal Physiology, 1997, 273,<br>F1030-F1038. | 2.7  | 19        |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Effects of chloride channel blockers on hypoxic injury in rat proximal tubules. Kidney International, 1997, 51, 1529-1534.                                                                                    | 5.2  | 16        |
| 74 | Chloride channels in renal epithelial cells. Current Opinion in Nephrology and Hypertension, 1996, 5, 406-410.                                                                                                | 2.0  | 6         |
| 75 | Immunolocalization of NAD-dependent 11β-hydroxysteroid dehydrogenase in human kidney and colon.<br>Kidney International, 1996, 49, 271-281.                                                                   | 5.2  | 69        |
| 76 | Cl- channels in basolateral renal medullary vesicles X. Cloning of a Cl- channel from rabbit outer<br>medulla. Kidney International, 1995, 48, 1828-1836.                                                     | 5.2  | 19        |
| 77 | Clâ^' channels in basolateral renal medullary vesicles VIII. Partial purification and functional reconstitution of basolateral mTAL Clâ^' channels. Kidney International, 1994, 45, 803-810.                  | 5.2  | 1         |
| 78 | Activation of potassium channels contributes to hypoxic injury in proximal tubules Journal of Clinical Investigation, 1994, 94, 2289-2294.                                                                    | 8.2  | 49        |
| 79 | Cl? channels in basolateral renal medullary membranes: VII. Characterization of the intracellular<br>anion binding sites. Journal of Membrane Biology, 1993, 135, 145-52.                                     | 2.1  | 12        |
| 80 | Renal Epithelial Chloride Channels. Annual Review of Physiology, 1992, 54, 29-50.                                                                                                                             | 13.1 | 49        |
| 81 | Cl? channels in basolateral renal medullary vesicles: V. Comparison of basolateral mTALH Cl?<br>channels with apical Cl? channels from jejunum and trachea. Journal of Membrane Biology, 1992, 128,<br>27-39. | 2.1  | 18        |
| 82 | Clâ^' channels in basolateral renal medullary membrane vesicles: IV. Analogous channel activation by<br>Clâ^' or cAMP-dependent protein kinase. Journal of Membrane Biology, 1991, 122, 89-95.                | 2.1  | 25        |
| 83 | Clâ^' channels in basolateral renal medullary memnbranes: III. Determinants of single-channel activity.<br>Journal of Membrane Biology, 1990, 118, 269-278.                                                   | 2.1  | 26        |
| 84 | Clâ^ transport in basolateral renal medullary vesicles: I. Clâ^ transport in intact vesicles. Journal of<br>Membrane Biology, 1990, 113, 49-56.                                                               | 2.1  | 15        |
| 85 | Clâ^' transport in basolateral renal medullary vesicles: II. Clâ^' channels in planar lipid bilayers. Journal<br>of Membrane Biology, 1990, 113, 57-65.                                                       | 2.1  | 23        |
| 86 | Activation of K+ channels in renal medullary vesicles by cAMP-dependent protein kinase. Journal of Membrane Biology, 1989, 109, 65-72.                                                                        | 2.1  | 42        |
| 87 | Na+:K+:2Clâ^' cotransport and the thick ascending limb. Kidney International, 1989, 36, 418-426.                                                                                                              | 5.2  | 77        |
| 88 | Acute Anaphylactoid Reactions in Hemodialysis. American Journal of Kidney Diseases, 1985, 5, 132-135.                                                                                                         | 1.9  | 15        |
| 89 | Delayed hemolytic transfusion reaction in sickle cell anemia. Transfusion, 1980, 20, 477-477.                                                                                                                 | 1.6  | 5         |