Dazhi Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9170251/publications.pdf

Version: 2024-02-01

411340 425179 69,888 34 20 34 citations h-index g-index papers 35 35 35 70559 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Interaction between carbon nanotubes with functional groups and epoxy resin and its effect on thermal properties of carbon nanotubes/epoxy composites. Journal of Composite Materials, 2022, 56, 1287-1298.	1.2	5
2	Preparation of phase change material filled hybrid 2D/3D graphene structure with ultra-high thermal effusivity for effective thermal management. MethodsX, 2021, 8, 101385.	0.7	6
3	Phase change material filled hybrid 2D $\!\!\!/$ 3D graphene structure with ultra-high thermal effusivity for effective thermal management. Carbon, 2021, 176, 11-20.	5.4	29
4	Graphene Films for Flexible EMI Shielding Materials with Cross-Linked Structure via Reaction with Diamine Monomers. Nano, 2020, 15, 2050157.	0.5	1
5	On the Microstructure and Electrochemical Properties of Additively Manufactured Duplex Stainless Steels Produced Using Laser-Powder Bed Fusion. Corrosion, 2020, 76, 871-883.	0.5	25
6	Determining the interphase thickness and properties in carbon fiber reinforced fast and conventional curing epoxy matrix composites using peak force atomic force microscopy. Composites Science and Technology, 2019, 184, 107877.	3.8	41
7	Review on techniques to improve the strength of adhesive joints with composite adherends. Composites Part B: Engineering, 2019, 177, 107363.	5.9	137
8	Ultrathin flexible graphene films with high thermal conductivity and excellent EMI shielding performance using large-sized graphene oxide flakes. RSC Advances, 2019, 9, 1419-1427.	1.7	45
9	Ultrathin nitrogen-doping graphene films for flexible and stretchable EMI shielding materials. Journal of Materials Science, 2019, 54, 7165-7179.	1.7	47
10	On the Characterization of a Hitherto Unreported Icosahedral Quasicrystal Phase in Additively Manufactured Aluminum Alloy AA7075. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 529-533.	1.1	18
11	<i>In situ</i> reduction of graphene oxide in the poly (vinyl alcohol) matrix via microwave irradiation. Polymer Composites, 2019, 40, 170-178.	2.3	7
12	Investigation of strain history in fast and conventional curing epoxy matrix composites by FBGs. Composites Science and Technology, 2018, 159, 18-24.	3.8	21
13	Exploration relation between interlaminar shear properties of thin-ply laminates under short-beam bending and meso-structures. Journal of Composite Materials, 2018, 52, 2375-2386.	1.2	30
14	Effects of nano-SiO ₂ on mechanical and hygric behaviors of glass fiber reinforced epoxy composites. Science and Engineering of Composite Materials, 2018, 25, 253-259.	0.6	6
15	Glass transition temperature of amino groups grafted carbon nanotubes reinforced epoxy resin composites: Role of strong interphase. Polymer Composites, 2018, 39, E1129.	2.3	19
16	Probing the Effect of Salinity and pH on Surface Interactions between Air Bubbles and Hydrophobic Solids: Implications for Colloidal Assembly at Air/Water Interfaces. Chemistry - an Asian Journal, 2017, 12, 1568-1577.	1.7	26
17	Thermal conductivity of carbon nanoring linked graphene sheets: A molecular dynamics investigation. Chinese Physics B, 2017, 26, 106502.	0.7	5
18	3D Bridged Carbon Nanoring/Graphene Hybrid Paper as a Highâ€Performance Lateral Heat Spreader. Small, 2015, 11, 6197-6204.	5.2	79

#	Article	IF	CITATIONS
19	Effects of free organic groups in carbon nanotubes on glass transition temperature of epoxy matrix composites. Composites Science and Technology, 2015, 118, 269-275.	3.8	26
20	Nano-engineering thermal transport performance of carbon nanotube networks with polymer intercalation: a molecular dynamics study. Physical Chemistry Chemical Physics, 2014, 16, 4378.	1.3	19
21	Molecular dynamics simulation of mechanical performance of graphene/graphene oxide paper based polymer composites. Carbon, 2014, 67, 784-791.	5.4	60
22	Anisotropic mechanical properties of diamond lattice composites structures. Composite Structures, 2014, 109, 23-30.	3.1	49
23	A pressurized filtration technique for fabricating carbon nanotube buckypaper: Structure, mechanical and conductive properties. Microporous and Mesoporous Materials, 2014, 184, 127-133.	2.2	43
24	Two-stage mechanical percolation in the epoxy resin intercalated buckypaper with high mechanical performance. RSC Advances, 2013, 3, 15290.	1.7	10
25	Enhanced mechanical and electrical properties of carbon nanotube buckypaper by in situ cross-linking. Carbon, 2013, 63, 125-132.	5.4	101
26	Enhancement of pullout energy in a single-walled carbon nanotube-polyethylene composite system via auxetic effect. Composites Part A: Applied Science and Manufacturing, 2013, 55, 188-194.	3.8	18
27	Influence of geometries of multi-walled carbon nanotubes on the pore structures of Buckypaper. Composites Part A: Applied Science and Manufacturing, 2012, 43, 469-474.	3.8	38
28	Compaction Behavior and Part Thickness Variation in Vacuum Infusion Molding Process. Applied Composite Materials, 2012, 19, 443-458.	1.3	32
29	Rheological behaviors and processing windows of low viscosity epoxy resin for VIMP. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 931-934.	0.4	7
30	Interconnected multi-walled carbon nanotubes reinforced polymer-matrix composites. Composites Science and Technology, 2011, 71, 466-470.	3.8	63
31	Dynamic Contact Performance of Rubber Materials for Designing Wiper Blades. Journal of Materials Engineering and Performance, 2009, 18, 255-262.	1.2	1
32	Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006, 97, 187401.	2.9	12,689
33	Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, 306, 666-669.	6.0	56,177
34	A strategy to reduce delamination of adhesive joints with composite substrates. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , 146442071880571.	0.7	4