
Maurizio Pm Federico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9170199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strong SARS-CoV-2 N-Specific CD8+ T Immunity Induced by Engineered Extracellular Vesicles Associates with Protection from Lethal Infection in Mice. Viruses, 2022, 14, 329.	3.3	11
2	Extracellular Vesicles and Their Use as Vehicles of Immunogens. Methods in Molecular Biology, 2022, 2504, 177-198.	0.9	0
3	Biological and Immune Responses to Current Anti-SARS-CoV-2 mRNA Vaccines beyond Anti-Spike Antibody Production. Journal of Immunology Research, 2022, 2022, 1-7.	2.2	4
4	Activation of Anti-SARS-CoV-2 Human CTLs by Extracellular Vesicles Engineered with the N Viral Protein. Vaccines, 2022, 10, 1060.	4.4	4
5	Simultaneous CD8+ T-Cell Immune Response against SARS-Cov-2 S, M, and N Induced by Endogenously Engineered Extracellular Vesicles in Both Spleen and Lungs. Vaccines, 2021, 9, 240.	4.4	20
6	The C-Terminal Domain of Nefmut Is Dispensable for the CD8+ T Cell Immunogenicity of In Vivo Engineered Extracellular Vesicles. Vaccines, 2021, 9, 373.	4.4	4
7	Long-Term Antitumor CD8+ T Cell Immunity Induced by Endogenously Engineered Extracellular Vesicles. Cancers, 2021, 13, 2263.	3.7	5
8	Virus-Induced CD8+ T-Cell Immunity and Its Exploitation to Contain the SARS-CoV-2 Pandemic. Vaccines, 2021, 9, 922.	4.4	9
9	Extracellular vesicle-mediated intercellular communication in HIV-1 infection and its role in the reservoir maintenance. Cytokine and Growth Factor Reviews, 2020, 51, 40-48.	7.2	6
10	Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment through Mannose Receptor/CD206 Targeting. International Journal of Molecular Sciences, 2020, 21, 6318.	4.1	17
11	N-Terminal Fatty Acids of NEFMUT Are Required for the CD8+ T-Cell Immunogenicity of In Vivo Engineered Extracellular Vesicles. Vaccines, 2020, 8, 243.	4.4	8
12	Engineered Extracellular Vesicles/Exosomes as a New Tool against Neurodegenerative Diseases. Pharmaceutics, 2020, 12, 529.	4.5	11
13	Development of a novel human phage display-derived anti-LAG3 scFv antibody targeting CD8+ T lymphocyte exhaustion. BMC Biotechnology, 2019, 19, 67.	3.3	15
14	Anti-Cancer Vaccine for HPV-Associated Neoplasms: Focus on a Therapeutic HPV Vaccine Based on a Novel Tumor Antigen Delivery Method Using Endogenously Engineered Exosomes. Cancers, 2019, 11, 138.	3.7	30
15	Tumor cells endowed with professional antigen-presenting cell functions prime PBLs to generate antitumor CTLs. Journal of Molecular Medicine, 2019, 97, 1139-1153.	3.9	4
16	<p>The Intracellular Delivery Of Anti-HPV16 E7 scFvs Through Engineered Extracellular Vesicles Inhibits The Proliferation Of HPV-Infected Cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 8755-8768.	6.7	18
17	An Exosomeâ€Based Vaccine Platform Imparts Cytotoxic T Lymphocyte Immunity Against Viral Antigens. Biotechnology Journal, 2018, 13, e1700443.	3.5	77
18	Engineered exosomes emerging from muscle cells break immune tolerance to HER2 in transgenic mice and induce antigen-specific CTLs upon challenge by human dendritic cells. Journal of Molecular Medicine, 2018, 96, 211-221.	3.9	29

#	Article	IF	CITATIONS
19	DNA Vectors Generating Engineered Exosomes Potential CTL Vaccine Candidates Against AIDS, Hepatitis B, and Tumors. Molecular Biotechnology, 2018, 60, 773-782.	2.4	24
20	Exosomes in Therapy: Engineering, Pharmacokinetics and Future Applications. Current Drug Targets, 2018, 20, 87-95.	2.1	34
21	Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir. Archives of Virology, 2017, 162, 2565-2577.	2.1	11
22	The Multifaceted Functions of Exosomes in Health and Disease: An Overview. Advances in Experimental Medicine and Biology, 2017, 998, 3-19.	1.6	54
23	Antitumor HPV E7-specific CTL activity elicited by in vivo engineered exosomes produced through DNA inoculation. International Journal of Nanomedicine, 2017, Volume 12, 4579-4591.	6.7	58
24	The CD8+ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant. Vaccines, 2016, 4, 42.	4.4	13
25	Testing antiâ€HIV activity of antiretroviral agents in vitro using flow cytometry analysis of CEMâ€GFP cells infected with transfectionâ€derived HIVâ€1 NL4â€3. Journal of Medical Virology, 2016, 88, 979-986.	5.0	5
26	Engineered exosomes boost the HCV NS3-specific CD8+ T lymphocyte immunity in humans. Trials in Vaccinology, 2016, 5, 105-110.	1.2	10
27	Incorporation of Heterologous Proteins in Engineered Exosomes. Methods in Molecular Biology, 2016, 1448, 249-260.	0.9	18
28	Human papillomavirus E6 and E7 oncoproteins affect the expression of cancer-related microRNAs: additional evidence in HPV-induced tumorigenesis. Journal of Cancer Research and Clinical Oncology, 2016, 142, 1751-1763.	2.5	61
29	Latent HIV-1 is activated by exosomes from cells infected with either replication-competent or defective HIV-1. Retrovirology, 2015, 12, 87.	2.0	77
30	The Contribution of Extracellular Nef to HIV-Induced Pathogenesis. Current Drug Targets, 2015, 17, 46-53.	2.1	16
31	Editorial (Thematic Issue: Extra-Cellular Factors as New Anti-HIV Therapeutic Target). Current Drug Targets, 2015, 17, 3-3.	2.1	Ο
32	HPV-E7 Delivered by Engineered Exosomes Elicits a Protective CD8+ T Cell-Mediated Immune Response. Viruses, 2015, 7, 1079-1099.	3.3	47
33	Endogenous CCL2 neutralization restricts HIV-1 replication in primary human macrophages by inhibiting viral DNA accumulation. Retrovirology, 2015, 12, 4.	2.0	35
34	miR-146a controls CXCR4 expression in a pathway that involves PLZF and can be used to inhibit HIV-1 infection of CD4+ T lymphocytes. Virology, 2015, 478, 27-38.	2.4	26
35	Uncovering the role of defective HIV-1 in spreading viral infection. Future Virology, 2015, 10, 371-381.	1.8	1
36	The ADAR1 editing enzyme is encapsidated into HIV-1 virions. Virology, 2015, 485, 475-480.	2.4	12

MAURIZIO PM FEDERICO

#	Article	IF	CITATIONS
37	Surface-bound Tat inhibits antigen-specific CD8+ T-cell activation in an integrin-dependent manner. Aids, 2014, 28, 2189-2200.	2.2	24
38	Cell activation and HIV-1 replication in unstimulated CD4+T lymphocytes ingesting exosomes from cells expressing defective HIV-1. Retrovirology, 2014, 11, 46.	2.0	52
39	Exosomes from Human Immunodeficiency Virus Type 1 (HIV-1)-Infected Cells License Quiescent CD4 ⁺ T Lymphocytes To Replicate HIV-1 through a Nef- and ADAM17-Dependent Mechanism. Journal of Virology, 2014, 88, 11529-11539.	3.4	140
40	HIV-1-infected cells transiently express lentiviral RNA shuttled by exosomes. Future Virology, 2014, 9, 111-121.	1.8	0
41	HIV Nef, Paxillin, and Pak1/2 Regulate Activation and Secretion of TACE/ADAM10 Proteases. Molecular Cell, 2013, 49, 668-679.	9.7	83
42	Sequences within RNA coding for HIV-1 Gag p17 are efficiently targeted to exosomes. Cellular Microbiology, 2013, 15, 412-429.	2.1	49
43	HIV Impairs CD34+- Derived Monocytic Precursor Differentiation into Functional Dendritic Cells. International Journal of Immunopathology and Pharmacology, 2013, 26, 717-724.	2.1	0
44	Cytogenetic analysis of human cells reveals specific patterns of <scp>DNA</scp> damage in replicative and oncogeneâ€induced senescence. Aging Cell, 2013, 12, 312-315.	6.7	8
45	From virus-like particles to engineered exosomes for a new generation of vaccines. Future Virology, 2012, 7, 473-482.	1.8	4
46	Perturbed replication induced genome wide or at common fragile sites is differently managed in the absence of WRN. Carcinogenesis, 2012, 33, 1655-1663.	2.8	47
47	A strategy of antigen incorporation into exosomes: Comparing cross-presentation levels of antigens delivered by engineered exosomes and by lentiviral virus-like particles. Vaccine, 2012, 30, 7229-7237.	3.8	67
48	HIV-1 Tat Promotes Integrin-Mediated HIV Transmission to Dendritic Cells by Binding Env Spikes and Competes Neutralization by Anti-HIV Antibodies. PLoS ONE, 2012, 7, e48781.	2.5	56
49	Strong CD8+ T cell antigenicity and immunogenicity of large foreign proteins incorporated in HIV-1 VLPs able to induce a Nef-dependent activation/maturation of dendritic cells. Vaccine, 2011, 29, 3465-3475.	3.8	17
50	The Activity of Matrix Metalloproteinase-9 is Part of the Mechanism of Cell-to-Cell HIV-1 Endocytosis in Dendritic Cells. Current Drug Discovery Technologies, 2011, 8, 112-118.	1.2	2
51	HIV-protease inhibitors block the replication of both vesicular stomatitis and influenza viruses at an early post-entry replication step. Virology, 2011, 417, 37-49.	2.4	7
52	Virus-like particles show promise as candidates for new vaccine strategies. Future Virology, 2010, 5, 371-374.	1.8	5
53	Astrocytes contacting HIVâ€lâ€infected macrophages increase the release of CCL2 in response to the HIVâ€lâ€dependent enhancement of membraneâ€associated TNFα in macrophages. Glia, 2010, 58, 1893-1904.	4.9	29
54	Lentivirus-Based Virus-Like Particles as a New Protein Delivery Tool. Methods in Molecular Biology, 2010, 614, 111-124.	0.9	28

4

MAURIZIO PM FEDERICO

#	Article	IF	CITATIONS
55	Human immunodeficiency virus type 1 (HIV-1) protease inhibitors block cell-to-cell HIV-1 endocytosis in dendritic cells. Journal of General Virology, 2009, 90, 2777-2787.	2.9	6
56	Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. Journal of Cell Biology, 2009, 186, 255-268.	5.2	446
57	Anti-tumor CD8+ T cell immunity elicited by HIV-1-based virus-like particles incorporating HPV-16 E7 protein. Virology, 2009, 395, 45-55.	2.4	39
58	DC contact with HIVâ€1â€infected cells leads to high levels of Envâ€mediated virion endocytosis coupled with enhanced HIVâ€1 Ag presentation. European Journal of Immunology, 2009, 39, 404-416.	2.9	7
59	HIVâ€1 Nef induces p47 ^{phox} phosphorylation leading to a rapid superoxide anion release from the U937 human monoblastic cell line. Journal of Cellular Biochemistry, 2009, 106, 812-822.	2.6	20
60	Massive Secretion by T Cells Is Caused by HIV Nef in Infected Cells and by Nef Transfer to Bystander Cells. Cell Host and Microbe, 2009, 6, 218-230.	11.0	151
61	Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. Journal of Experimental Medicine, 2009, 206, i16-i16.	8.5	0
62	Virological Consequences of Early Events following Cell-Cell Contact between Human Immunodeficiency Virus Type 1-Infected and Uninfected CD4 + Cells. Journal of Virology, 2008, 82, 7773-7789.	3.4	33
63	Role of the HIV-1 regulatory protein Nef. Future HIV Therapy, 2008, 2, 37-45.	0.4	1
64	Macrophages Transmit Human Immunodeficiency Virus Type 1 Products to CD4-Negative Cells: Involvement of Matrix Metalloproteinase 9. Journal of Virology, 2007, 81, 9078-9087.	3.4	20
65	Hypoxia inhibits Moloney murine leukemia virus expression in activated macrophages. Journal of Leukocyte Biology, 2007, 81, 528-538.	3.3	10
66	In Vitro Treatment of Human Monocytes/Macrophages with Myristoylated Recombinant Nef of Human Immunodeficiency Virus Type 1 Leads to the Activation of Mitogen-Activated Protein Kinases, IήB Kinases, and Interferon Regulatory Factor 3 and to the Release of Beta Interferon. Journal of Virology, 2007, 81, 2777-2791.	3.4	51
67	Microarray Analysis Reveals CCL24/Eotaxin-2 as an Effector of the Pathogenetic Effects Induced by HIV-1 Nef. Current Drug Discovery Technologies, 2007, 4, 12-23.	1.2	6
68	HIV-1 Nef protects human-monocyte-derived macrophages from HIV-1-induced apoptosis. Experimental Cell Research, 2006, 312, 890-900.	2.6	50
69	Generation and characterization of a stable cell population releasing fluorescent HIV-1-based Virus Like Particles in an inducible way. BMC Biotechnology, 2006, 6, 52.	3.3	16
70	Selective elimination of HIV-1-infected cells by Env-directed, HIV-1-based virus-like particles. Virology, 2006, 345, 115-126.	2.4	20
71	HIV-1 Nef regulates the release of superoxide anions from human macrophages. Biochemical Journal, 2005, 390, 591-602.	3.7	41
72	T Lymphocytes Transduced with a Lentiviral Vector Expressing F12-vif Are Protected from HIV-1 Infection in an APOBEC3G-Independent Manner. Molecular Therapy, 2005, 12, 697-706.	8.2	20

#	Article	IF	CITATIONS
73	Cell Death Induced by the Herpes Simplex Virus-1 Thymidine Kinase Delivered by Human Immunodeficiency Virus-1-Based Virus-like Particles. Molecular Therapy, 2005, 12, 1185-1196.	8.2	37
74	Inhibition of HIVâ€1 Replication in Monocyteâ€Derived Macrophages byMycobacterium tuberculosis. Journal of Infectious Diseases, 2004, 189, 624-633.	4.0	39
75	HIV-1 Nef Enhances Both Membrane Expression and Virion Incorporation of Env Products. Journal of Biological Chemistry, 2004, 279, 22996-23006.	3.4	37
76	Targeting the Nef Induced Increase of HIV Infectivity. Current Drug Targets Immune, Endocrine and Metabolic Disorders, 2004, 4, 321-326.	1.8	3
77	The HIV-1 Nef Protein: How An AIDS Pathogenetic Factor Turns to a Tool for Combating AIDS. Current Drug Targets Immune, Endocrine and Metabolic Disorders, 2004, 4, 19-27.	1.8	5
78	Vav exchange factor counteracts the HIV-1 Nef-mediated decrease of plasma membrane GM1 and NF-AT activity in T cells. European Journal of Immunology, 2003, 33, 2186-2196.	2.9	12
79	From Lentiviruses to Lentivirus Vectors. , 2003, 229, 3-15.		12
80	Human immunodeficiency virus type 1 (HIV-1) Nef activates STAT3 in primary human monocyte/macrophages through the release of soluble factors: involvement of Nef domains interacting with the cell endocytotic machinery. Journal of Leukocyte Biology, 2003, 74, 821-832.	3.3	47
81	HIV-1 Nef Induces the Release of Inflammatory Factors from Human Monocyte/Macrophages: Involvement of Nef Endocytotic Signals and NF-κB Activation. Journal of Immunology, 2003, 170, 1716-1727.	0.8	124
82	Inducible Expression of the ΔNGFr/F12Nef Fusion Protein as a New Tool for Anti-Human Immunodeficiency Virus Type 1 Gene Therapy. Human Gene Therapy, 2002, 13, 1751-1766.	2.7	6
83	HIV-1 Nef activates STAT1 in human monocytes/macrophages through the release of soluble factors. Blood, 2001, 98, 2752-2761.	1.4	92
84	Nef from Human Immunodeficiency Virus Type 1 F12 Inhibits Viral Production and Infectivity. Journal of Virology, 2001, 75, 6601-6608.	3.4	34
85	Genetic and functional analysis of the human immunodeficiency virus (HIV) type 1-inhibiting F12-HIVnef allele. Journal of General Virology, 2001, 82, 2735-2745.	2.9	32
86	Impairment of Human Immunodeficiency Virus Type 1 (HIV-1) Entry into Jurkat T Cells by Constitutive Expression of the HIV-1 Vpr Protein: Role of CD4 Down-Modulation. Journal of Virology, 2000, 74, 10207-10211.	3.4	9
87	<i>cis</i> Expression of the F12 Human Immunodeficiency Virus (HIV) Nef Allele Transforms the Highly Productive NL4-3 HIV Type 1 to a Replication-Defective Strain: Involvement of both Env gp41 and CD4 Intracytoplasmic Tails. Journal of Virology, 2000, 74, 483-492.	3.4	32
88	T-tropic human immunodeficiency virus (HIV) type 1 Nef protein enters human monocyte–macrophages and induces resistance to HIV replication: a possible mechanism of HIV T-tropic emergence in AIDS. Journal of General Virology, 2000, 81, 2905-2917.	2.9	37
89	Lentiviruses as gene delivery vectors. Current Opinion in Biotechnology, 1999, 10, 448-453.	6.6	36
90	<i>gag</i> , <i>vif</i> , and <i>nef</i> Genes Contribute to the Homologous Viral Interference Induced by a Nonproducer Human Immunodeficiency Virus Type 1 (HIV-1) Variant: Identification of Novel HIV-1-Inhibiting Viral Protein Mutants. Journal of Virology, 1998, 72, 4308-4319.	3.4	40

#	Article	IF	CITATIONS
91	Human Immunodeficiency Virus (HIV)-Resistant CD4+ UT-7 Megakaryocytic Human Cell Line Becomes Highly HIV-1 and HIV-2 Susceptible Upon CXCR4 Transfection: Induction of Cell Differentiation by HIV-1 Infection. Blood, 1997, 89, 2670-2678.	1.4	24
92	A Replication-Deficient Human Immunodeficiency Virus-1 Genome as an Interference-Inducing Provirus. Antibiotics and Chemotherapy, 1996, 48, 217-225.	0.5	0
93	Anti-HIV Viral Interference Induced by Retroviral Vectors Expressing a Nonproducer HIV-1 Variant. Acta Haematologica, 1996, 95, 199-203.	1.4	10
94	The Non-Producer Phenotype of the Human Immunodeficiency Virus Type 1 Provirus F12/HIV-1 is the Result of Multiple Genetic Variations. Journal of General Virology, 1996, 77, 2009-2013.	2.9	5
95	Full expression of transfected nonproducer interfering HIV-1 proviral DNAabrogates susceptibility of human He-La CD4+ cells to HIV. Virology, 1995, 206, 76-84.	2.4	16
96	Homologous Superinfection of Both Producer and Nonproducer HIV-Infected Cells Is Blocked at a Late Retrotranscription Step. Virology, 1993, 194, 441-452.	2.4	32
97	HIV variability and perspectives for a vaccine. Vaccine, 1993, 11, 542-544.	3.8	4
98	A recombinant retrovirus carrying a non-producer human immunodeficiency virus (HIV) type 1 variant induces resistance to superinfecting HIV. Journal of General Virology, 1993, 74, 2099-2110.	2.9	19
99	Extrachromosomal human immunodeficiency virus type 1 DNA forms in fresh peripheral blood lymphocytes and in two interleukin-2-independent T cell lines derived from peripheral blood lymphocytes of an asymptomatic seropositive subject. Journal of General Virology, 1992, 73, 3087-3097.	2.9	11
100	Interaction of HIV-1 with susceptible lymphoblastoid cells1H NMR studies. FEBS Letters, 1991, 285, 11-16.	2.8	11
101	Biologic and Molecular Characterization of Producer and Nonproducer Clones from HUT-78 Cells Infected with a Patient HIV Isolate. AIDS Research and Human Retroviruses, 1989, 5, 385-396.	1.1	28
102	Opposite effects of murine interferons on erythroid differentiation of friend cells. Virology, 1988, 167, 185-193.	2.4	3
103	Interferons-α/β- and -γ-Resistant Friend Cell Variants Exhibiting Receptor Sites for Interferons but No Induction of 2-5A Synthetase and 67K Protein Kinase. Journal of Interferon Research, 1988, 8, 113-127.	1.2	13
104	Recovery of HIV-related Retroviruses From Italian Patients with AIDS or AIDS-related Complex and from Asymptomatic At-Risk Individuals. Annals of the New York Academy of Sciences, 1987, 511, 390-400.	3.8	29
105	Anti-tumor effects of interferon in mice injected with interferon-sensitive and interferon-resistant friend leukemia cells. V. Comparisons with the action of tumor necrosis factor. International Journal of Cancer, 1986, 38, 771-778.	5.1	34
106	Natural resistance in mice against friend leukemia cells. Cellular Immunology, 1986, 98, 230-237.	3.0	4
107	LETTERS TO THE EDITOR. AIDS Research, 1986, 2, 267-269.	0.5	3
108	2′,5′-Oligoadenylate Synthetase-Uninducible Alpha/Beta-Interferon-Resistant Friend Cells Develop an Antiviral State when Permeabilized with Lysolecithin and Treated with 2′,5′-Oligoadenylate Oligomers. Journal of Interferon Research, 1986, 6, 233-240.	1.2	6