
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9170138/publications.pdf Version: 2024-02-01

DINCRIN LILL

#	Article	lF	CITATIONS
1	Gold Nanoparticles for In Vitro Diagnostics. Chemical Reviews, 2015, 115, 10575-10636.	47.7	725
2	Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale, 2011, 3, 1421.	5.6	392
3	A Highly Sensitive, Dual-Readout Assay Based on Gold Nanoparticles for Organophosphorus and Carbamate Pesticides. Analytical Chemistry, 2012, 84, 4185-4191.	6.5	389
4	Highly Sensitive, Colorimetric Detection of Mercury(II) in Aqueous Media by Quaternary Ammonium Group-Capped Gold Nanoparticles at Room Temperature. Analytical Chemistry, 2010, 82, 9606-9610.	6.5	315
5	Using Azobenzeneâ€Embedded Selfâ€Assembled Monolayers To Photochemically Control Cell Adhesion Reversibly. Angewandte Chemie - International Edition, 2009, 48, 4406-4408.	13.8	237
6	Resettable, Multiâ€Readout Logic Gates Based on Controllably Reversible Aggregation of Gold Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 4103-4107.	13.8	229
7	Glucose Oxidase-Catalyzed Growth of Gold Nanoparticles Enables Quantitative Detection of Attomolar Cancer Biomarkers. Analytical Chemistry, 2014, 86, 5800-5806.	6.5	160
8	Gold Nanoparticle-Based Activatable Probe for Sensing Ultralow Levels of Prostate-Specific Antigen. ACS Nano, 2013, 7, 5568-5576.	14.6	154
9	Acetylcholinesteraseâ€Catalyzed Hydrolysis Allows Ultrasensitive Detection of Pathogens with the Naked Eye. Angewandte Chemie - International Edition, 2013, 52, 14065-14069.	13.8	123
10	Building Electromagnetic Hot Spots in Living Cells <i>via</i> Target-Triggered Nanoparticle Dimerization. ACS Nano, 2017, 11, 3532-3541.	14.6	119
11	Prussian Blue as a Highly Sensitive and Background-Free Resonant Raman Reporter. Analytical Chemistry, 2017, 89, 1551-1557.	6.5	95
12	A Highly Sensitive Goldâ€Nanoparticleâ€Based Assay for Acetylcholinesterase in Cerebrospinal Fluid of Transgenic Mice with Alzheimer's Disease. Advanced Healthcare Materials, 2012, 1, 90-95.	7.6	88
13	Nucleic Acids Analysis. Science China Chemistry, 2021, 64, 171-203.	8.2	88
14	SERS Tags for Biomedical Detection and Bioimaging. Theranostics, 2022, 12, 1870-1903.	10.0	78
15	A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles. Nanoscale, 2015, 7, 15584-15588.	5.6	72
16	Release Strategies of Silver Ions from Materials for Bacterial Killing. ACS Applied Bio Materials, 2021, 4, 3985-3999.	4.6	67
17	Highly Robust, Recyclable Displacement Assay for Mercuric Ions in Aqueous Solutions and Living Cells. ACS Nano, 2012, 6, 10999-11008.	14.6	62
18	Trace MicroRNA Quantification by Means of Plasmon-Enhanced Hybridization Chain Reaction. Analytical Chemistry, 2016, 88, 4600-4604.	6.5	60

#	Article	IF	CITATIONS
19	Plasmonic ELISA based on the controlled growth of silver nanoparticles. Nanoscale, 2016, 8, 17271-17277.	5.6	58
20	High-Precision Profiling of Sialic Acid Expression in Cancer Cells and Tissues Using Background-Free Surface-Enhanced Raman Scattering Tags. Analytical Chemistry, 2017, 89, 5874-5881.	6.5	49
21	Alkyne- and Nitrile-Anchored Gold Nanoparticles for Multiplex SERS Imaging of Biomarkers in Cancer Cells and Tissues. Nanotheranostics, 2019, 3, 113-119.	5.2	45
22	Multichannel Stimulus-Responsive Nanoprobes for H ₂ O ₂ Sensing in Diverse Biological Milieus. Analytical Chemistry, 2020, 92, 12639-12646.	6.5	45
23	A Wash-Free Homogeneous Colorimetric Immunoassay Method. Theranostics, 2016, 6, 54-64.	10.0	44
24	Nanozyme-assisted sensitive profiling of exosomal proteins for rapid cancer diagnosis. Theranostics, 2020, 10, 9303-9314.	10.0	44
25	Interferenceâ€Free Surfaceâ€Enhanced Raman Scattering Tags for Singleâ€Cell Molecular Imaging with a High Signalâ€ŧoâ€Background Ratio. Small, 2017, 13, 1603340.	10.0	43
26	Live-Cell Pyrophosphate Imaging by in Situ Hot-Spot Generation. Analytical Chemistry, 2017, 89, 3532-3537.	6.5	42
27	In Situ Hot-Spot Assembly as a General Strategy for Probing Single Biomolecules. Analytical Chemistry, 2017, 89, 4776-4780.	6.5	42
28	Highly Bright AIE Nanoparticles by Regulating the Substituent of Rhodanine for Precise Early Detection of Atherosclerosis and Drug Screening. Advanced Materials, 2022, 34, e2106994.	21.0	40
29	General Approach to Engineering Extracellular Vesicles for Biomedical Analysis. Analytical Chemistry, 2019, 91, 12752-12759.	6.5	38
30	In Vivo Tracking of Multiple Tumor Exosomes Labeled by Phospholipid-Based Bioorthogonal Conjugation. Analytical Chemistry, 2018, 90, 11273-11279.	6.5	37
31	Multiplexed Imaging of Trace Residues in a Single Latent Fingerprint. Analytical Chemistry, 2016, 88, 12502-12507.	6.5	34
32	Janus PEGylated gold nanoparticles: a robust colorimetric probe for sensing nitrite ions in complex samples. Nanoscale, 2017, 9, 1811-1815.	5.6	33
33	Reversible Self-Assembly of Nanoprobes in Live Cells for Dynamic Intracellular pH Imaging. ACS Nano, 2019, 13, 1421-1432.	14.6	33
34	A universal strategy for the one-pot synthesis of SERS tags. Nanoscale, 2018, 10, 8292-8297.	5.6	30
35	Gadolinium-doped Au@prussian blue nanoparticles as MR/SERS bimodal agents for dendritic cell activating and tracking. Theranostics, 2020, 10, 6061-6071.	10.0	28
36	pH-Mediated Clustering of Exosomes: Breaking Through the Size Limit of Exosome Analysis in Conventional Flow Cytometry. Nano Letters, 2021, 21, 8817-8823.	9.1	28

#	Article	IF	CITATIONS
37	Utilization of unmodified gold nanoparticles in colorimetric detection. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1757-1765.	5.1	27
38	Recent advances in background-free Raman scattering for bioanalysis. TrAC - Trends in Analytical Chemistry, 2020, 123, 115765.	11.4	27
39	Peptide interdigitation-induced twisted nanoribbons as chiral scaffolds for supramolecular nanozymes. Nanoscale, 2020, 12, 2422-2433.	5.6	24
40	Cross-Linked Poly(ethylene glycol) Shells for Nanoparticles: Enhanced Stealth Effect and Colloidal Stability. Langmuir, 2019, 35, 8799-8805.	3.5	23
41	Reliable Quantification of pH Variation in Live Cells Using Prussian Blue-Caged Surface-Enhanced Raman Scattering Probes. Analytical Chemistry, 2020, 92, 9574-9582.	6.5	23
42	Inâ€Sequence Highâ€Specificity Dualâ€Reporter Unlocking of Fluorescent Probe Enables the Precise Identification of Atherosclerotic Plaques. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
43	Recent progress in the application of microfluidic systems and gold nanoparticles in immunoassays. Science China Chemistry, 2011, 54, 1227-1232.	8.2	18
44	Stimulus-responsive surface-enhanced Raman scattering: a "Trojan horse―strategy for precision molecular diagnosis of cancer. Chemical Science, 2020, 11, 6111-6120.	7.4	17
45	Encapsulating a Single Nanoprobe in a Multifunctional Nanogel for High-Fidelity Imaging of Caspase Activity in Vivo. Analytical Chemistry, 2019, 91, 13633-13638.	6.5	16
46	Using selenium-conjugated polyethylene glycol to enhance the stability of gold nanoparticles in biologically relevant samples. Science China Chemistry, 2019, 62, 280-286.	8.2	16
47	Chemoenzymatic Labeling of Extracellular Vesicles for Visualizing Their Cellular Internalization in Real Time. Analytical Chemistry, 2020, 92, 2103-2111.	6.5	13
48	Stimuliâ€Mediated Specific Isolation of Exosomes from Blood Plasma for Highâ€Throughput Profiling of Cancer Biomarkers. Small Methods, 2022, 6, e2101234.	8.6	12
49	A functional DNA nanosensor for highly sensitive and selective imaging of ClOâ^' in atherosclerotic plaques. Biosensors and Bioelectronics, 2022, 209, 114273.	10.1	11
50	Assembly of DNA Probes into Superstructures for Dramatically Enhancing Enzymatic Stability and Signal-to-Background Ratio. ACS Sensors, 2018, 3, 2702-2708.	7.8	10
51	A novel SERS biosensor for ultrasensitive detection of mercury(II) in complex biological samples. Sensors and Actuators B: Chemical, 2022, 351, 130934.	7.8	10
52	When Prussian Blue Meets Porous Gold Nanoparticles: A High Signalâ€ŧoâ€Background Surfaceâ€Enhanced Raman Scattering Probe for Cellular Biomarker Imaging. Advanced Biology, 2019, 3, e1900046.	3.0	9
53	Selfâ€Assembly of Biocompatible FeSe Hollow Nanostructures and 2D CuFeSe Nanosheets with One―and Twoâ€Photon Luminescence Properties. Small, 2019, 15, e1900627.	10.0	9
54	Photoactive Silver Nanoagents for Backgroundless Monitoring and Precision Killing of Multidrug-Resistant Bacteria. Nanotheranostics, 2021, 5, 472-487.	5.2	8

#	Article	IF	CITATIONS
55	In-situ monitoring of nitrile-bearing pesticide residues by background-free surface-enhanced Raman spectroscopy. Chinese Chemical Letters, 2022, 33, 519-522.	9.0	8
56	Advanced technologies for single-cell in situ protein profiling. Science China Chemistry, 2022, 65, 48-67.	8.2	8
57	Cu ²⁺ Detection with Gold Nanoparticles by Patterning Colorimetric Strips on a Filter Membrane Assembled in a Microfluidic Chip. Chinese Journal of Chemistry, 2012, 30, 2047-2051.	4.9	7
58	Dual-Responsive Self-Assembled Monolayer for Specific Capture and On-Demand Release of Live Cells. Langmuir, 2018, 34, 8145-8153.	3.5	7
59	Dual functional molecule aided background-free SERS sensor for intracellular pH dynamic monitoring based on foldable DNA transition. Sensors and Actuators B: Chemical, 2022, 353, 131162.	7.8	7
60	Click RNA for Rapid Capture and Identification of Intracellular MicroRNA Targets. Analytical Chemistry, 2019, 91, 15740-15747.	6.5	6
61	Direct cytoplasm delivery of gold nanoparticles for real-time apoptosis detection. Nano Research, 2020, 13, 853-860.	10.4	6
62	Twoâ€step signal amplification for highâ€sensitivity detection of biomarkers using gold nanoparticle–based conjugates. Electrophoresis, 2019, 40, 2211-2217.	2.4	5
63	Photothermal Therapy: Reversibly Extracellular pH Controlled Cellular Uptake and Photothermal Therapy by PEGylated Mixed-Charge Gold Nanostars (Small 15/2015). Small, 2015, 11, 1738-1738.	10.0	1
64	An Ultrasensitive Biosensing Platform Employing Acetylcholinesterase and Gold Nanoparticles. Methods in Molecular Biology, 2017, 1530, 307-316.	0.9	1
65	Colorimetric detection of class A soybean saponins by coupling DNAzyme with the gap ligase chain reaction. Analytical Methods, 2020, 12, 3361-3367.	2.7	1
66	Colorimetric Detection of Class A Soybean Saponins by G-Quadruplex-Based Hybridization Chain Reaction. Journal of Analytical Methods in Chemistry, 2020, 2020, 1-8.	1.6	0
67	Coating polymers on nanoparticles for biomedical uses. , 2021, , .		0
68	Inâ€Sequence Highâ€Specificity Dualâ€Reporter Unlocking of Fluorescent Probe Enables the Precise Identification of Atherosclerotic Plaques. Angewandte Chemie, 0, , .	2.0	0
69	Frontispiz: Inâ€Sequence Highâ€Specificity Dualâ€Reporter Unlocking of Fluorescent Probe Enables the Precise Identification of Atherosclerotic Plaques. Angewandte Chemie, 2022, 134, .	2.0	0
70	Frontispiece: Inâ€Sequence Highâ€Specificity Dualâ€Reporter Unlocking of Fluorescent Probe Enables the Precise Identification of Atherosclerotic Plaques. Angewandte Chemie - International Edition, 2022, 61,	13.8	0