

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9169958/publications.pdf Version: 2024-02-01

I NI KEMAN

#	Article	IF	CITATIONS
1	Colorless Coherent TDM-PON Based on a Frequency-Comb Laser. Journal of Lightwave Technology, 2022, 40, 4287-4299.	4.6	4
2	Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines. Optica, 2021, 8, 511.	9.3	41
3	Chip-based frequency combs for wavelength-division multiplexing applications. , 2020, , 51-102.		1
4	Generalized Kramers–Kronig receiver for coherent terahertz communications. Nature Photonics, 2020, 14, 601-606.	31.4	139
5	Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography. Light: Science and Applications, 2020, 9, 71.	16.6	77
6	Performance of chip-scale optical frequency comb generators in coherent WDM communications. Optics Express, 2020, 28, 12897.	3.4	35
7	Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 GBd PAM4 signaling with sub-1â€dB phase-shifter loss. Optics Express, 2020, 28, 24693.	3.4	47
8	32QAM WDM transmission at 12 Tbit/s using a quantum-dash mode-locked laser diode (QD-MLLD) with external-cavity feedback. Optics Express, 2020, 28, 23594.	3.4	18
9	SOH Mach-Zehnder Modulators for 100 GBd PAM4 Signaling With Sub-1 dB Phase-Shifter Loss. , 2020, , .		10
10	THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nature Photonics, 2019, 13, 519-524.	31.4	170
11	Coherent ePIC Receiver for 64 GBaud QPSK in 0.25 μm Photonic BiCMOS Technology. Journal of Lightwave Technology, 2019, 37, 103-109.	4.6	24
12	Capacitively Coupled Silicon-Organic Hybrid Modulator for 200 Gbit/s PAM-4 Signaling. , 2019, , .		8
13	Comb-based WDM transmission at 10 Tbit/s using a DC-driven quantum-dash mode-locked laser diode. Optics Express, 2019, 27, 31110.	3.4	30
14	Coherent WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator. Optics Express, 2019, 27, 31164.	3.4	35
15	Wireless THz link with optoelectronic transmitter and receiver. Optica, 2019, 6, 1063.	9.3	79
16	110-m THz Wireless Transmission at 100 Gbit/s Using a Kramers-Kronig Schottky Barrier Diode Receiver. , 2018, , .		20
17	Wireless Transmission at 0.3 THz Using Direct THz-to-Optical Conversion at the Receiver. , 2018, , .		5
18	Photonic Wire Bonding and 3D Nanoprinting in Photonic Integration – from Lab Demonstrations to Production. , 2018, , .		0

J N KEMAL

#	Article	IF	CITATIONS
19	Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator. Optica, 2018, 5, 739.	9.3	131
20	Terahertz-to-Optical Conversion Using a Plasmonic Modulator. , 2018, , .		10
21	Demonstration of long-term thermally stable silicon-organic hybrid modulators at 85 °C. Optics Express, 2018, 26, 27955.	3.4	32
22	Electrically packaged silicon-organic hybrid (SOH) I/Q-modulator for 64 GBd operation. Optics Express, 2018, 26, 34580.	3.4	12
23	Chip-scale frequency comb generators for high-speed communications and optical metrology. , 2017, , .		0
24	Microresonator-based solitons for massively parallel coherent optical communications. Nature, 2017, 546, 274-279.	27.8	816
25	Four-Channel 784 Gbit/s Transmitter Module Enabled by Photonic Wire Bonding and Silicon-Organic Hybrid Modulators. , 2017, , .		4
26	WDM Transmission Using Quantum-Dash Mode-Locked Laser Diodes as Multi-Wavelength Source and Local Oscillator. , 2017, , .		14
27	32QAM WDM Transmission Using a Quantum-Dash Passively Mode-Locked Laser with Resonant Feedback. , 2017, , .		16
28	8-channel 448 Gbit/s Silicon Photonic Transmitter Enabled by Photonic Wire Bonding. , 2017, , .		11
29	Wireless THz Communications Using Optoelectronic Techniques for Signal Generation and Coherent Reception. , 2017, , .		4
30	Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator. Optics Express, 2016, 24, 25432.	3.4	44
31	Silicon-organic hybrid (SOH) devices and their use in comb-based communication systems. , 2016, , .		0
32	Multi-terabit/s transmission using chip-scale frequency comb sources. , 2016, , .		0
33	8.32 Tbit/s Coherent Transmission Using a Quantum-Dash Mode-Locked Laser Diode. , 2016, , .		9
34	50 Tbit/s Massively Parallel WDM Transmission in C and L Band Using Interleaved Cavity-Soliton Kerr Combs. , 2016, , .		3
35	Coherent Terabit Communications Using a Quantum-Dash Mode-Locked Laser and Self-Homodyne Detection. , 2015, , .		10
36	Parallel multi-wavelength intradyne reception using an optical frequency comb as a local oscillator. , 2015, , .		2

#	Article	IF	CITATIONS
37	Terabit/s communications using chip-scale frequency comb sources. , 2015, , .		1
38	Full C and L-Band Transmission at 20 Tbit/s Using Cavity-Soliton Kerr Frequency Combs. , 2015, , .		13