Marcos Dantus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9168997/publications.pdf

Version: 2024-02-01

233 papers 8,343 citations

41344 49 h-index 85 g-index

238 all docs

238 docs citations

238 times ranked

4630 citing authors

#	Article	IF	CITATIONS
1	Human Serum Albumin Dimerization Enhances the S ₂ Emission of Bound Cyanine IR806. Journal of Physical Chemistry Letters, 2022, 13, 1825-1832.	4.6	2
2	Ultrafast disruptive probing: Simultaneously keeping track of tens of reaction pathways. Review of Scientific Instruments, 2022, 93, 033003.	1.3	10
3	Pulse shaping in strong-field ionization: Theory and experiments. Physical Review A, 2022, 105, .	2.5	4
4	Chemical complexity of the retina addressed by novel phasor analysis of unstained multimodal microscopy. Chemical Physics, 2021, 543, 111091.	1.9	4
5	Milliradian precision ultrafast pulse control for spectral phase metrology. Optics Express, 2021, 29, 14314.	3.4	2
6	Femtosecond dynamics and coherence of ionic retro-Diels–Alder reactions. Journal of Chemical Physics, 2021, 155, 044303.	3.0	6
7	Controlling Quantum Interference between Virtual and Dipole Two-Photon Optical Excitation Pathways Using Phase-Shaped Laser Pulses. Journal of Physical Chemistry A, 2021, 125, 7534-7544.	2.5	8
8	A comparison of strategies for stateâ€selective coherent Raman excitation. Journal of Raman Spectroscopy, 2021, 52, 2029-2037.	2.5	2
9	Quantitative Unmixing of Endogenous Chromophores in the Retina via Super-Phasors. , 2021, , .		0
10	Excited-State Dynamics of a Substituted Fluorene Derivative. The Central Role of Hydrogen Bonding Interactions with the Solvent. Journal of Physical Chemistry B, 2021, 125, 12242-12253.	2.6	2
11	Linear and Nonlinear Optical Processes Controlling S2 and S1 Dual Fluorescence in Cyanine Dyes. Journal of Physical Chemistry A, 2021, 125, 9770-9784.	2.5	4
12	Intramolecular Relaxation Dynamics Mediated by Solvent–Solute Interactions of Substituted Fluorene Derivatives. Solute Structural Dependence. Journal of Physical Chemistry B, 2021, 125, 12486-12499.	2.6	0
13	Steric effects in light-induced solvent proton abstraction. Physical Chemistry Chemical Physics, 2020, 22, 19613-19622.	2.8	4
14	Control of electron recollision and molecular nonsequential double ionization. Communications Physics, 2020, 3, .	5.3	9
15	Isoenergetic two-photon excitation enhances solvent-to-solute excited-state proton transfer. Journal of Chemical Physics, 2020, 153, 224301.	3.0	4
16	Proton Abstraction Mediates Interactions between the Super Photobase FRO-SB and Surrounding Alcohol Solvent. Journal of Physical Chemistry B, 2019, 123, 8448-8456.	2.6	9
17	Quantum coherent control of H3+ formation in strong fields. Journal of Chemical Physics, 2019, 150, 044303.	3.0	9
18	Mimicking Microbial Rhodopsin Isomerization in a Single Crystal. Journal of the American Chemical Society, 2019, 141, 1735-1741.	13.7	10

#	Article	IF	CITATIONS
19	Substituent effects on H3+ formation via H2 roaming mechanisms from organic molecules under strong-field photodissociation. Journal of Chemical Physics, 2018, 149, 244310.	3.0	27
20	H2 roaming chemistry and the formation of H3+ from organic molecules in strong laser fields. Nature Communications, 2018, 9, 5186.	12.8	73
21	Ultrafast Dynamics of a "Super―Photobase. Angewandte Chemie, 2018, 130, 14958-14962.	2.0	7
22	Titelbild: Ultrafast Dynamics of a "Super―Photobase (Angew. Chem. 45/2018). Angewandte Chemie, 2018, 130, 14869-14869.	2.0	0
23	Ultrafast Dynamics of a "Super―Photobase. Angewandte Chemie - International Edition, 2018, 57, 14742-14746.	13.8	36
24	Femtosecond real-time probing of reactions MMXVII: The predissociation of sodium iodide in the A O+state. Chemical Physics Letters, 2017, 683, 121-127.	2.6	6
25	Epi-direction detected multimodal imaging of an unstained mouse retina with a Yb-fiber laser. , 2017, 10069, .		0
26	Time-resolved signatures across the intramolecular response in substituted cyanine dyes. Physical Chemistry Chemical Physics, 2017, 19, 14085-14095.	2.8	5
27	Binary-phase compression of stretched pulses. Journal of Optics (United Kingdom), 2017, 19, 105506.	2.2	1
28	Mechanisms and time-resolved dynamics for trihydrogen cation (H3 +) formation from organic molecules in strong laser fields. Scientific Reports, 2017, 7, 4703.	3.3	62
29	Multimodal nonlinear optical imaging of unstained retinas in the epi-direction with a sub-40 fs Yb-fiber laser. Biomedical Optics Express, 2017, 8, 5228.	2.9	12
30	Eye-safe near-infrared trace explosives detection and imaging. Optics Express, 2017, 25, 5832.	3.4	11
31	Multimodal Biomedical Imaging with Programmable Pulses from a Yb-Fiber Laser. , 2017, , .		0
32	Characterization and adaptive compression of a multi-soliton laser source. Optics Express, 2017, 25, 320.	3.4	1
33	Multiphoton excited hemoglobin fluorescence and third harmonic generation for non-invasive microscopy of stored blood. Biomedical Optics Express, 2016, 7, 3449.	2.9	30
34	Intravital Imaging Study on Photodamage Produced by Femtosecond Nearâ€infrared Laser Pulses ⟨i⟩In Vivo⟨ i⟩. Photochemistry and Photobiology, 2016, 92, 308-313.	2.5	12
35	Stain-free histopathology by programmable supercontinuum pulses. Nature Photonics, 2016, 10, 534-540.	31.4	177
36	Fluid flow vorticity measurement using laser beams with orbital angular momentum. Optics Express, 2016, 24, 11762.	3.4	40

3

#	Article	IF	CITATIONS
37	Molecular level crossing and the geometric phase effect from the optical Hanle perspective. Physical Review A, $2016, 93, .$	2.5	2
38	Order of Magnitude Dissociative Ionization Enhancement Observed for Pulses with High Order Dispersion. Journal of Physical Chemistry A, 2016, 120, 8529-8536.	2.5	6
39	Stimulated Emission Enhancement Using Shaped Pulses. Journal of Physical Chemistry A, 2016, 120, 2002-2008.	2.5	10
40	Single Broadband Phase-Shaped Pulse Stimulated Raman Spectroscopy for Standoff Trace Explosive Detection. Journal of Physical Chemistry Letters, 2016, 7, 117-125.	4.6	17
41	Mitigating self-action processes with chirp or binary phase shaping. Optics Letters, 2016, 41, 131.	3.3	4
42	Controlling S ₂ Population in Cyanine Dyes Using Shaped Femtosecond Pulses. Journal of Physical Chemistry A, 2016, 120, 1876-1885.	2.5	11
43	Phase-only synthesis of ultrafast stretched square pulses. Optics Express, 2015, 23, 27105.	3.4	8
44	Subâ€40Âfs, 1060â€nm Ybâ€fiber laser enhances penetration depth in nonlinear optical microscopy of human skin. Journal of Biomedical Optics, 2015, 20, 120501.	2.6	21
45	Investigating the role of human serum albumin protein pocket on the excited state dynamics of indocyanine green using shaped femtosecond laser pulses. Physical Chemistry Chemical Physics, 2015, 17, 5872-5877.	2.8	27
46	Femtosecond Nanoplasmonic Dephasing of Individual Silver Nanoparticles and Small Clusters. Journal of Physical Chemistry Letters, 2015, 6, 1638-1644.	4.6	24
47	Laser-induced Breakdown Spectroscopy and ablation threshold analysis using a megahertz Yb fiber laser oscillator. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 107, 146-151.	2.9	17
48	Quantifying noise in ultrafast laser sources and its effect on nonlinear applications. Optics Express, 2015, 23, 12037.	3.4	14
49	Spectral amplitude and phase noise characterization of titanium-sapphire lasers. Optics Express, 2015, 23, 23597.	3.4	10
50	Vortices in the wake of a femtosecond laser filament. Optics Express, 2014, 22, 26098.	3.4	17
51	Polyatomic Molecules under Intense Femtosecond Laser Irradiation. Journal of Physical Chemistry A, 2014, 118, 11433-11450.	2.5	30
52	Simultaneous selective two-photon microscopy using MHz rate pulse shaping and quadrature detection of the time-multiplexed signal. Proceedings of SPIE, 2014, , .	0.8	0
53	Real-time single-shot measurement and correction of pulse phase and amplitude for ultrafast lasers. Optical Engineering, 2014, 53, 051511.	1.0	5
54	Solvent Environment Revealed by Positively Chirped Pulses. Journal of Physical Chemistry Letters, 2014, 5, 924-928.	4.6	12

#	Article	IF	CITATIONS
55	Multi-photon molecular tagging velocimetry with femtosecond excitation (FemtoMTV). Experiments in Fluids, 2014, 55, 1.	2.4	5
56	Laser-induced dispersion control. Optics Letters, 2014, 39, 3208.	3.3	1
57	Ultrafast Ionization and Fragmentation: From Small Molecules to Proteomic Analysis. Springer Series in Chemical Physics, 2014, , 171-203.	0.2	0
58	Simultaneous Selective Two-Photon Microscopy Using MHz Rate Pulse Shaping and Quadrature Detection of the Time-Multiplexed Signal. , 2014, , .		0
59	Standoff explosives trace detection and imaging by selective stimulated Raman scattering. Applied Physics Letters, 2013, 103, .	3.3	34
60	Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses. Optical Engineering, 2013, 53, 051505.	1.0	27
61	Historical perspective on: Femtosecond transition-state spectroscopy of iodine—From strongly bound to repulsive surface dynamics [Volume 161, Issues 4–5, 22 September 1989, Pages 297–302]. Chemical Physics Letters, 2013, 589, 41.	2.6	0
62	Reprint of: Femtosecond transition-state spectroscopy of iodine: From strongly bound to repulsive surface dynamics. Chemical Physics Letters, 2013, 589, 42-45.	2.6	5
63	Anomalous laser-induced group velocity dispersion in fused silica. Optics Express, 2013, 21, 17695.	3.4	5
64	45 fs optical pulses from phase corrected broadband cascaded four wave mixing products. Laser Physics Letters, 2013, 10, 125109.	1.4	3
65	Kerr effect induced transient group-velocity dispersion of fused silica measured via real-time MIIPS and spectral interferometry. , 2013, , .		0
66	Shaper-based approach to real-time correction of ultrashort pulse phase drifts and transient pulse dispersion measurements. EPJ Web of Conferences, 2013, 41, 11007.	0.3	0
67	Electronic Coherence Mediated Quantum Control of Chemical Reactions in Polyatomic Molecules., 2013,,.		0
68	Multimodal microscopy with sub-30 fs Yb fiber laser oscillator. Biomedical Optics Express, 2012, 3, 1750.	2.9	37
69	Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution. Optics Express, 2012, 20, 14213.	3.4	59
70	Pulse duration and energy dependence of photodamage and lethality induced by femtosecond near infrared laser pulses in Drosophila melanogaster. Journal of Photochemistry and Photobiology B: Biology, 2012, 115, 42-50.	3.8	19
71	Optical Response of Fluorescent Molecules Studied by Synthetic Femtosecond Laser Pulses. Journal of Physical Chemistry Letters, 2012, 3, 1329-1335.	4.6	14
72	Mechanism Elucidation for Nonstochastic Femtosecond Laser-Induced Ionization/Dissociation: From Amino Acids to Peptides. Journal of Physical Chemistry A, 2012, 116, 2764-2774.	2.5	18

#	Article	IF	CITATIONS
73	Solvation Stokes-Shift Dynamics Studied by Chirped Femtosecond Laser Pulses. Journal of Physical Chemistry Letters, 2012, 3, 2458-2464.	4.6	27
74	Single-Shot Gas-Phase Thermometry by Time-to-Frequency Mapping of Coherence Dephasing. Journal of Physical Chemistry A, 2012, 116, 8138-8141.	2.5	5
75	Photodissociation Dynamics of Acetophenone and Its Derivatives with Intense Nonresonant Femtosecond Pulses. Journal of Physical Chemistry A, 2011, 115, 1305-1312.	2.5	22
76	Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering. Applied Physics Letters, 2011, 99, .	3.3	60
77	Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source. Optics Express, 2011, 19, 5163.	3.4	19
78	Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment. Optics Express, 2011, 19, 12074.	3.4	67
79	An Ultrafast Fiber Laser with Self-Similar Evolution in the Gain Segment. Optics and Photonics News, 2011, 22, 47.	0.5	8
80	Measurement of group velocity dispersion of solvents using 2-cycle femtosecond pulses: Experiment and theory. AIP Advances, $2011,1,\ldots$	1.3	8
81	Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy. Nature Photonics, 2011, 5, 103-109.	31.4	161
82	Binary phase shaping for selective singleâ€beam CARS spectroscopy and imaging of gasâ€phase molecules. Journal of Raman Spectroscopy, 2011, 42, 393-398.	2.5	19
83	Tandem mass spectrometry strategies for phosphoproteome analysis. Mass Spectrometry Reviews, 2011, 30, 600-625.	5.4	121
84	Enhanced characterization of singly protonated phosphopeptide ions by femtosecond laser-induced ionization/dissociation tandem mass spectrometry (fs-LID-MS/MS). Journal of the American Society for Mass Spectrometry, 2010, 21, 2031-2040.	2.8	26
85	Singleâ€beam coherent antiâ€Stokes Raman scattering (CARS) spectroscopy of gasâ€phase CO ₂ via phase and polarization shaping of a broadband continuum. Journal of Raman Spectroscopy, 2010, 41, 1194-1199.	2.5	37
86	Pulse Shaping Strategies for Single-beam CARS. , 2010, , .		0
87	Atmospheric Pressure Femtosecond Laser Imaging Mass Spectrometry. Analytical Chemistry, 2010, 82, 2753-2758.	6.5	53
88	Applications of Femtochemistry to Proteomic and Metabolomic Analysis. Journal of Physical Chemistry A, 2010, 114, 10380-10387.	2.5	6
89	Measurement and Control of Ultrashort Optical Pulse Propagation in Metal Nanoparticle-Covered Dielectric Surfaces. Journal of Physical Chemistry C, 2010, 114, 12375-12381.	3.1	15
90	Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses. Applied Optics, 2010, 49, 6348.	2.1	13

#	Article	IF	Citations
91	Single-beam shaper-based pulse characterization and compression using MIIPS sonogram. Optics Letters, 2010, 35, 1422.	3.3	14
92	Generation of high energy 4.8 fs pulses from helium-argon mixture filled hollow waveguide., 2009,,.		0
93	Standoff chemical detection using single-beam CARS. , 2009, , .		0
94	Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse. Applied Physics Letters, 2009, 95, 074102.	3.3	58
95	Two-photon imaging using adaptive phase compensated ultrashort laser pulses. Journal of Biomedical Optics, 2009, 14, 014002.	2.6	55
96	Femtosecond Laser-Induced Ionization/Dissociation of Protonated Peptides. Journal of the American Chemical Society, 2009, 131, 940-942.	13.7	69
97	Comment on "Closing the Loop on Bond Selective Chemistry Using Tailored Strong Field Laser Pulses― Journal of Physical Chemistry A, 2009, 113, 5264-5266.	2.5	11
98	Generation of Complex Optical Pulse Sequences by Multiple Comb Shaping. Optics and Photonics News, 2009, 20, 43.	0.5	0
99	Multiple Independent Comb Shaping (MICS): Phase-only generation of optical pulse sequences. Optics Express, 2009, 17, 14351.	3.4	41
100	Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering. Applied Optics, 2009, 48, B17.	2.1	54
101	Influence of the temporal shape of femtosecond pulses on silicon micromachining. Journal of Applied Physics, 2009, 106, 123101.	2.5	11
102	Advantages of Two-photon Microscopy with Ultrashort Pulses. Springer Series in Chemical Physics, 2009, , 1012-1014.	0.2	0
103	Nonlinear Optical Imaging with Sub-12fs Pulses. , 2009, , .		0
104	Applications of ultrashort shaped pulses in microscopy and for controlling chemical reactions. Chemical Physics, 2008, 350, 118-124.	1.9	3
105	Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses. Optics Communications, 2008, 281, 1841-1849.	2.1	76
106	Control of Molecular Fragmentation Using Shaped Femtosecond Pulses. Journal of Physical Chemistry A, 2008, 112, 3789-3812.	2.5	97
107	One- and Two-Photon Fluorescent Polyhedral Oligosilsesquioxane (POSS) Nanosensor Arrays for the Remote Detection of Analytes in Clouds, in Solution, and on Surfaces. Chemistry of Materials, 2008, 20, 2829-2838.	6.7	28
108	Detection of chemicals at a standoff $g;10\ m$ distance based on single-beam coherent anti-Stokes Raman scattering. Proceedings of SPIE, 2008, , .	0.8	4

#	Article	IF	Citations
109	Single-Beam Coherent Anti-Stokes Raman Scattering for Standoff Detection. Optics and Photonics News, 2008, 19, 46.	0.5	3
110	Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses. Journal of the Optical Society of America B: Optical Physics, 2008, 25, A140.	2.1	129
111	Direct measurement of spectral phase for ultrashort laser pulses. Optics Express, 2008, 16, 592.	3.4	42
112	Coherent mode-selective Raman excitation towards standoff detection. Optics Express, 2008, 16, 5499.	3.4	92
113	Broadband 2.12 GHz Ti:sapphire laser compressed to 5.9 femtoseconds using MIIPS. Optics Express, 2008, 16, 10033.	3.4	11
114	Asynchronous encrypted information transmission with sub-6 fs laser system at 2.12 GHz repetition rate. Optics Express, 2008, 16, 15109.	3.4	2
115	MULTIDIMENSIONAL IDENTIFICATION OF CHEMICAL WARFARE AGENTS USING SHAPED FEMTOSECOND PULSES. International Journal of High Speed Electronics and Systems, 2008, 18, 63-70.	0.7	O
116	Generation of intense ultra-short laser pulse from argon-filled hollow waveguide using MIIPS. , 2008, , .		0
117	MULTIDIMENSIONAL IDENTIFICATION OF CHEMICAL WARFARE AGENTS USING SHAPED FEMTOSECOND PULSES. Selected Topics in Electornics and Systems, 2008, , 321-328.	0.2	0
118	In-situ pulse characterization for silicon micromachining., 2007,,.		0
119	Remote Chemical Detection Using SUPER-CARS. , 2007, , .		0
120	Pulse Shaping of Octave Spanning Femtosecond Laser Pulses. , 2007, , .		2
121	Selective Two-Photon Excitation for Biomedical Imaging. , 2007, , .		O
122	Spectral Phase Control of Remote Surface-Plasmon-Mediated Two-Photon-Induced Luminescence. , 2007, , .		0
123	High resolution two photon excitation spectroscopy by pulse shaping an ultrabroad bandwidth femtosecond laser., 2007,,.		O
124	The Impact of Ultrashort Femtosecond Pulse-Shaping Technology for Micromachining. , 2007, , .		0
125	Controlling the excited state charge transfer in DMABN using shaped femtosecond pulses. , 2007, , .		1
126	Spectral phase control of remote surface-plasmon-mediated two-photon-induced luminescence. , 2007, , .		0

#	Article	lF	Citations
127	In-situ Pulse Characterization for Silicon Micromachining. , 2007, , .		O
128	The impact of ultrashort femtosecond pulse-shaping technology for micromachining., 2007,,.		0
129	Phase Characterization and Adaptive Pulse Compression Using MIIPS In Air., 2007, , .		0
130	Controlling the Excited State Charge Transfer in DMABN Using Shaped Femtosecond Pulses. , 2007, , .		0
131	Automated phase characterization and adaptive pulse compression using multiphoton intrapulse interference phase scan in air. Optics Express, 2007, 15, 1932.	3.4	3
132	In-situ femtosecond laser pulse characterization and compression during micromachining. Optics Express, 2007, 15, 16061.	3.4	13
133	Femtosecond pulse shaping adds a new dimension to mass spectrometry. Applied Optics, 2007, 46, 4041.	2.1	17
134	Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan. Applied Optics, 2007, 46, 8394.	2.1	37
135	Effect of Pulse Shaping on Silicon Micromachining Monitored by Laser Induced Breakdown Spectroscopy and Surface Second Harmonic Generation. , 2007, , .		0
136	Isomeric identification by laser control mass spectrometry. Journal of Mass Spectrometry, 2007, 42, 178-186.	1.6	26
137	Symmetry of nonlinear optical response to time inversion of shaped femtosecond pulses as a clock of ultrafast dynamics. Chemical Physics, 2007, 338, 259-267.	1.9	8
138	Polarization and Phase Control of Remote Surface-Plasmon-Mediated Two-Photon-Induced Emission and Waveguiding. Nano Letters, 2006, 6, 2804-2809.	9.1	24
139	Laser control of physicochemical processes; experiments and applications. Annual Reports on the Progress of Chemistry Section C, 2006, 102, 227.	4.4	23
140	Laser-based molecular identification. , 2006, , .		0
141	Systematic chemical recognition using shaped laser pulses. Journal of Modern Optics, 2006, 53, 2533-2541.	1.3	3
142	Search Space Mapping:  Getting a Picture of Coherent Laser Control. Journal of Physical Chemistry A, 2006, 110, 11388-11391.	2.5	11
143	Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 750.	2.1	242
144	Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS. Optics Express, 2006, 14, 8885.	3.4	19

#	Article	IF	CITATIONS
145	No loss spectral phase correction and arbitrary phase shaping of regeneratively amplified femtosecond pulses using MIIPS. Optics Express, 2006, 14, 9537.	3.4	29
146	Pulse shaping of octave spanning femtosecond laser pulses. Optics Express, 2006, 14, 10939.	3.4	49
147	Remote Two-Photon Emission From Dendritic Silver Nanoclusters. Microscopy and Microanalysis, 2006, 12, 630-631.	0.4	0
148	Two-Photon Induced Emission From Silver Nanoparticle Aggregates on Thin Films and in Solution. Microscopy and Microanalysis, 2006, 12, 632-633.	0.4	0
149	Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses. Chemical Physics Letters, 2006, 423, 197-201.	2.6	36
150	Advantages of ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2006, 2, 177-181.	3.3	18
151	Coherent control improves biomedical imaging with ultrashort shaped pulses. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180, 307-313.	3.9	31
152	Control of Molecular Fragmentation Using Binary Phase-Shaped Femtosecond Laser Pulses. ChemPhysChem, 2006, 7, 2471-2473.	2.1	11
153	Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields. Physical Review A, 2006, 74, .	2.5	34
154	No loss spectral phase correction and arbitrary phase shaping of regeneratively amplified femtosecond pulses using MIIPS., 2006,,.		2
155	Converting Concepts and Dreams of Coherent Control into Applications. , 2006, , 434-440.		0
156	Systematic Control of Nonlinear Optical Processes Using Optimally Shaped Femtosecond Pulses. ChemPhysChem, 2005, 6, 1970-2000.	2.1	78
157	Compensation of phase distortions introduced by high objectives on sub-10 fs pulses. , 2005, , .		0
158	Multidimensional Analytical Method Based on Binary Phase Shaping of Femtosecond Pulses. Journal of Physical Chemistry A, 2005, 109, 2413-2416.	2.5	29
159	Quantitative Mass Spectrometric Identification of Isomers Applying Coherent Laser Control. Journal of Physical Chemistry A, 2005, 109, 8447-8450.	2.5	47
160	Spectral phase optimization of femtosecond laser pulses for narrow-band, low-background nonlinear spectroscopy. Optics Express, 2005, 13, 10882.	3.4	12
161	ULTRAFAST TECHNOLOGY Femtosecond Chemical Dynamics: Gas-Phase. , 2005, , 240-253.		0
162	Use of coherent control methods through scattering biological tissue to achieve functional imaging. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16996-17001.	7.1	92

#	Article	IF	CITATIONS
163	Multiphoton Intrapulse Interference 3:  Probing Microscopic Chemical Environments. Journal of Physical Chemistry A, 2004, 108, 53-58.	2.5	7 5
164	Experimental Coherent Laser Control of Physicochemical Processes. Chemical Reviews, 2004, 104, 1813-1860.	47.7	321
165	Introduction:  Femtochemistry. Chemical Reviews, 2004, 104, 1717-1718.	47.7	40
166	Multiphoton intrapulse interference 6; binary phase shaping. Optics Express, 2004, 12, 1061.	3.4	81
167	Multiphoton Intrapulse Interference 8. Coherent control through scattering tissue. Optics Express, 2004, 12, 4144.	3.4	29
168	Multiphoton intrapulse interferenceâ€fIVâ€fUltrashort laser pulse spectral phase characterization and compensation. Optics Letters, 2004, 29, 775.	3.3	387
169	Femtosecond photon echo measurements of electronic coherence relaxation of I2 in the presence of He, Ar, N2, O2, C3H8., 2004, , 33-36.		0
170	Control of nonlinear optical excitation with multiphoton intrapulse interference., 2004,, 95-101.		0
171	Rotational wavepacket revivals for phase modulation of ultrafast pulses. Chemical Physics Letters, 2003, 372, 739-744.	2.6	17
172	Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses. Journal of Chemical Physics, 2003, 118, 3187-3196.	3.0	200
173	Ultrafast Laser Induced Molecular Alignment and Deformation: Experimental Evidence from Neutral Molecules and from Fragment Ionsâ€. Journal of Physical Chemistry A, 2003, 107, 8271-8281.	2.5	38
174	Selective two-photon microscopy with shaped femtosecond pulses. Optics Express, 2003, 11, 1695.	3.4	156
175	Control of multiphoton excitation in condensed phases based on multiphoton intrapulse interference., 2003,,.		0
176	Femtosecond photon echo measurements of electronic coherence relaxation between the $X(1l_{g+})$ and $B(3l_{0u+})$ states of I2 in the presence of He, Ar, N2, O2, C3H8. Journal of Chemical Physics, 2003, 119, 6546-6553.	3.0	11
177	Femtosecond four-wave mixing for molecule based computation. Springer Series in Chemical Physics, 2003, , 97-98.	0.2	0
178	Multiphoton Intrapulse Interference. 1. Control of Multiphoton Processes in Condensed Phases. Journal of Physical Chemistry A, 2002, 106, 9369-9373.	2.5	173
179	Ultrafast Nonlinear Spectroscopic Techniques in the Gas Phase and Their Density Matrix Representation. Journal of Physical Chemistry A, 2002, 106, 697-718.	2.5	69
180	Four-Wave Mixing and Coherent Control. ACS Symposium Series, 2002, , 61-80.	0.5	1

#	Article	IF	Citations
181	Photon echo pulse sequences with femtosecond shaped laser pulses as a vehicle for molecule-based quantum computation. Chemical Physics Letters, 2002, 351, 213-221.	2.6	21
182	Femtosecond Four-Wave Mixing for Molecule Based Computation. , 2002, , .		0
183	COHERENTNONLINEARSPECTROSCOPY: From Femtosecond Dynamics to Control. Annual Review of Physical Chemistry, 2001, 52, 639-679.	10.8	115
184	Ultrafast Rotational Anisotropy Measurements:Â Strong-Field Nonlinear Saturation Effects. Journal of Physical Chemistry A, 2001, 105, 8004-8010.	2.5	6
185	The role of microscopic and macroscopic coherence in laser control. Chemical Physics, 2001, 267, 99-114.	1.9	18
186	Cascaded free-induction decay four-wave mixing. Chemical Physics, 2001, 266, 205-212.	1.9	23
187	Femtosecond photon echo and virtual echo measurements of the vibronic and vibrational coherence relaxation times of iodine vapor. Chemical Physics Letters, 2001, 333, 76-82.	2.6	26
188	Femtosecond ground state dynamics of gas phase N2O4 and NO2. Chemical Physics Letters, 2001, 349, 71-78.	2.6	15
189	Femtosecond spectrally dispersed three-pulse four-wave mixing: the role of sequence and chirp in controlling intramolecular dynamics. Journal of Raman Spectroscopy, 2000, 31, 41-49.	2.5	36
190	The role of pulse sequences in controlling ultrafast intramolecular dynamics with four-wave mixing. International Reviews in Physical Chemistry, 2000, 19, 531-552.	2.3	22
191	Femtosecond concerted elimination of halogen molecules from halogenated alkanes. Physical Chemistry Chemical Physics, 2000, 2, 885-891.	2.8	28
192	WHAT ROLE CAN FOUR-WAVE MIXING TECHNIQUES PLAY IN COHERENT CONTROL?., 2000, , .		1
193	Control of photoassociation yield: a quantum-dynamical study of the mercury system to explore the role of pulse duration from nanoseconds to femtoseconds. Chemical Physics Letters, 1999, 306, 18-24.	2.6	18
194	Femtosecond transient-grating techniques: Population and coherence dynamics involving ground and excited states. Journal of Chemical Physics, 1999, 110, 5772-5788.	3.0	128
195	Sequences for controlling laser excitation with femtosecond three-pulse four-wave mixing. Faraday Discussions, 1999, 113, 401-424.	3.2	23
196	Population and coherence control by three-pulse four-wave mixing. Journal of Chemical Physics, 1999, 111, 3779-3782.	3.0	40
197	Ultrafast Rotational Anisotropy Measurements:Â Unidirectional Detection. Journal of Physical Chemistry A, 1999, 103, 2912-2916.	2.5	11
198	Control and Characterization of Intramolecular Dynamics with Chirped Femtosecond Three-Pulse Four-Wave Mixing. Journal of Physical Chemistry A, 1999, 103, 10226-10236.	2.5	22

#	Article	IF	Citations
199	Imaging the Molecular Dimensions and Oligomerization of Proteins at Liquid/Solid Interfaces. Journal of Physical Chemistry B, 1998, 102, 1649-1657.	2.6	44
200	Femtosecond Dynamics of Unimolecular and Unrestricted Bimolecular Reactions. Journal of Physical Chemistry A, 1998, 102, 4111-4117.	2.5	12
201	Charge Density Wave Caused by Reducing ThSe3 by One Electron. Superstructure and Short-Range Order in ATh2Se6 (A = K, Rb) Studied by X-ray Diffraction, Electron Diffraction, and Diffuse Scattering. Journal of the American Chemical Society, 1998, 120, 10706-10714.	13.7	44
202	Quantum control of the yield of a chemical reaction. Journal of Chemical Physics, 1998, 108, 4375-4378.	3.0	61
203	Femtosecond dynamics of photoinduced molecular detachment from halogenated alkanes. II. Asynchronous concerted elimination of I2 from CH2I2. Journal of Chemical Physics, 1998, 109, 4428-4442.	3.0	42
204	Femtosecond dynamics of photoinduced molecular detachment from halogenated alkanes. I. Transition state dynamics and product channel coherence. Journal of Chemical Physics, 1998, 109, 4415-4427.	3.0	32
205	Femtosecond photoassociation: Coherence and implications for control in bimolecular reactions. Journal of Chemical Physics, 1997, 106, 8013-8021.	3.0	27
206	Concerted elimination dynamics from highly excited states. Faraday Discussions, 1997, 108, 63-80.	3.2	24
207	Investigation of Protein Structure at the Solid/Liquid Interface with Atomic Force Microscopy (Afm). Microscopy and Microanalysis, 1997, 3, 1257-1258.	0.4	0
208	Femtosecond observation of a concerted chemical reaction. Chemical Physics Letters, 1996, 256, 57-62.	2.6	45
209	Femtosecond photoassociation spectroscopy: coherent bond formation. Chemical Physics Letters, 1995, 245, 393-399.	2.6	75
210	Ultrafast Electron Diffraction. 5. Experimental Time Resolution and Applications. The Journal of Physical Chemistry, 1994, 98, 2782-2796.	2.9	127
211	Femtosecond reaction dynamics of Rydberg states. Methyl iodide. Chemical Physics Letters, 1993, 214, 281-289.	2.6	58
212	Femtochemistry: recent advances and extension to high pressures. Journal of Photochemistry and Photobiology A: Chemistry, 1992, 62, 301-319.	3.9	57
213	Ultrafast diffraction and molecular structure. Chemical Physics Letters, 1992, 196, 529-534.	2.6	114
214	Femtosecond probing of molecular dynamics by mass-spectrometry in a molecular beam. Chemical Physics Letters, 1991, 181, 281-287.	2.6	99
215	Femtosecond laser observations of molecular vibration and rotation. Nature, 1990, 343, 737-739.	27.8	158
216	Femtosecond multiphoton dynamics of higher-energy potentials. Chemical Physics Letters, 1990, 174, 546-552.	2.6	35

#	Article	IF	Citations
217	Femtosecond temporal spectroscopy and direct inversion to the potential: Application to iodine. Chemical Physics Letters, 1990, 166, 459-469.	2.6	147
218	Femtosecond selective control of wave packet population. Chemical Physics Letters, 1990, 171, 1-4.	2.6	67
219	Femtosecond realâ€time probing of reactions. V. The reaction of IHgl. Journal of Chemical Physics, 1989, 91, 7437-7450.	3.0	132
220	Femtosecond transition-state spectroscopy of iodine: From strongly bound to repulsive surface dynamics. Chemical Physics Letters, 1989, 161, 297-302.	2.6	196
221	Femtosecond real-time alignment in chemical reactions. Chemical Physics Letters, 1989, 159, 406-412.	2.6	63
222	Femtochemistry of the reaction: lHgl*→[lHg…l]‡*→Hgl+l. Chemical Physics Letters, 1989, 156, 131-137.	2.6	67
223	Femtosecond realâ€time probing of reactions. I. The technique. Journal of Chemical Physics, 1988, 89, 6113-6127.	3.0	231
224	Femtosecond realâ€time probing of reactions. II. The dissociation reaction of ICN. Journal of Chemical Physics, 1988, 89, 6128-6140.	3.0	181
225	Femtosecond Clocking of the Chemical Bond. Science, 1988, 241, 1200-1202.	12.6	131
226	Realâ€time femtosecond probing of â€~â€~transition states'' in chemical reactions. Journal of Chemical Physics, 1987, 87, 2395-2397.	3.0	381
227	Stepwise Solvation of the Intramolecular-Charge-Transfer Molecule p-(Dimethylamino)benzonitrile. The Journal of Physical Chemistry, 1987, 91, 6162-6167.	2.9	63
228	Real-time measurements of IVR versus inferences from spectral broadening data: the alkylanilines "ring + tail―system. Chemical Physics Letters, 1986, 130, 473-481.	2.6	36
229	Spectroscopic study of jetâ€cooled fluoranthene. Journal of Chemical Physics, 1985, 82, 4771-4776.	3.0	21
230	Pseudorandom binary pulse shaping in femtosecond laser spectroscopy and imaging. , 0, , .		0
231	Chemical agent detection based on shaped laser pulse technology. , 0, , .		0
232	Highly reproducible control of photofragmentation and ionization using binary phase shaping pulse. , $0, , .$		0
233	Femtosecond Laser Shaping. , 0, , .		4