K Madhavan Nampoothiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9168793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 2010, 101, 8493-8501.	9.6	1,943
2	Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 2011, 102, 186-193.	9.6	931
3	Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Applied Microbiology and Biotechnology, 2007, 74, 524-534.	3.6	499
4	Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochemical Engineering Journal, 2003, 15, 107-115.	3.6	307
5	Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnology Advances, 2009, 27, 145-152.	11.7	232
6	Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresource Technology, 2008, 99, 4597-4602.	9.6	211
7	Coconut oil cake––a potential raw material for the production of α-amylase. Bioresource Technology, 2004, 93, 169-174.	9.6	194
8	Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochemistry, 2006, 41, 759-763.	3.7	178
9	Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Archives of Microbiology, 2010, 192, 1049-1057.	2.2	176
10	Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT - Food Science and Technology, 2015, 64, 1179-1186.	5.2	175
11	2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp International Journal of Food Microbiology, 2015, 211, 44-50.	4.7	168
12	Microbial assisted High Impact Polystyrene (HIPS) degradation. Bioresource Technology, 2016, 213, 204-207.	9.6	151
13	Accelerated pentose utilization by <i><scp>C</scp>orynebacterium glutamicum</i> for accelerated production of lysine, glutamate, ornithine and putrescine. Microbial Biotechnology, 2013, 6, 131-140.	4.2	143
14	Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. Journal of Hazardous Materials, 2016, 318, 347-354.	12.4	123
15	Process optimization for antifungal chitinase production by Trichoderma harzianum. Process Biochemistry, 2004, 39, 1583-1590.	3.7	116
16	An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresource Technology, 2017, 241, 1152-1156.	9.6	116
17	Biochemical Characterization of Acyl Carrier Protein (AcpM) and Malonyl-CoA:AcpM Transacylase (mtFabD), Two Major Components ofMycobacterium tuberculosis Fatty Acid Synthase II. Journal of Biological Chemistry, 2001, 276, 27967-27974.	3.4	113
18	Mycolic acid biosynthesis and enzymic characterization of the β-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. Biochemical Journal, 2002, 364, 423-430.	3.7	112

#	Article	IF	CITATIONS
19	Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2011, 92, 985-996.	3.6	108
20	Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresource Technology, 2006, 97, 506-511.	9.6	106
21	Mixed substrate fermentation for the production of phytase by Rhizopus spp. using oilcakes as substrates. Process Biochemistry, 2005, 40, 1749-1754.	3.7	93
22	Fermentative production of gellan using Sphingomonas paucimobilis. Process Biochemistry, 2003, 38, 1513-1519.	3.7	87
23	Extracellular chitinase production byTrichoderma harzianum in submerged fermentation. Journal of Basic Microbiology, 2004, 44, 49-58.	3.3	81
24	Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for l-lactic acid production from starchy wastes. Bioresource Technology, 2008, 99, 8008-8015.	9.6	81
25	Probiotic fermented foods for health benefits. Engineering in Life Sciences, 2012, 12, 377-390.	3.6	81
26	Alpha amylase from a fungal culture grown on oil cakes and its properties. Brazilian Archives of Biology and Technology, 2004, 47, 309-317.	0.5	74
27	Review on technological and scientific aspects of feruloyl esterases: A versatile enzyme for biorefining of biomass. Bioresource Technology, 2015, 193, 534-544.	9.6	72
28	Thermostable Phytase Production by <1>Thermoascus aurantiacus 1 in Submerged Fermentation. Applied Biochemistry and Biotechnology, 2004, 118, 205-214.	2.9	71
29	Simultaneous Saccharification and Fermentation of Cassava Bagasse for L-(+)-Lactic Acid Production Using Lactobacilli. Applied Biochemistry and Biotechnology, 2006, 134, 263-272.	2.9	67
30	Solid state fermentation for L-glutamic acid production using Brevibacterium sp Biotechnology Letters, 1996, 18, 199-204.	2.2	62
31	Expression of genes of lipid synthesis and altered lipid composition modulates L -glutamate efflux of Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2002, 58, 89-96.	3.6	61
32	Production and characterization of poly(3-hydroxy butyrate-co-3 hydroxyvalerate) (PHBV) by a novel halotolerant mangrove isolate. Bioresource Technology, 2016, 201, 253-260.	9.6	61
33	Statistical optimization of simultaneous saccharification and l(+)-lactic acid fermentation from cassava bagasse using mixed culture of lactobacilli by response surface methodology. Biochemical Engineering Journal, 2007, 36, 262-267.	3.6	60
34	L(+)-Lactic Acid Production Using Lactobacillus Casei in Solid-State Fermentation. Biotechnology Letters, 2005, 27, 1685-1688.	2.2	56
35	Biochemical Characterization of Raw-starch-digesting Alpha Amylase Purified from Bacillus amyloliquefaciens. Applied Biochemistry and Biotechnology, 2009, 158, 653-662.	2.9	55
36	Newly Isolated Lactic Acid Bacteria with Probiotic Features for Potential Application in Food Industry. Applied Biochemistry and Biotechnology, 2012, 167, 1314-1324.	2.9	54

#	Article	IF	CITATIONS
37	Valorization of lignocellulosic residues from the olive oil industry by production of lignin, glucose and functional sugars. Bioresource Technology, 2019, 292, 121936.	9.6	53
38	Control of Spoilage Fungi by Protective Lactic Acid Bacteria Displaying Probiotic Properties. Applied Biochemistry and Biotechnology, 2014, 172, 3402-3413.	2.9	51
39	Development and characterization of corn starch-gelatin based edible films incorporated with mango and pineapple for active packaging. Food Bioscience, 2021, 41, 100977.	4.4	51
40	Immobilized bacterial α-amylase for effective hydrolysis of raw and soluble starch. Food Research International, 2009, 42, 436-442.	6.2	48
41	Appraisal of lactic acid bacteria as protective cultures. Food Control, 2016, 69, 61-64.	5.5	47
42	Evaluation of the Probiotic Characteristics of Newly Isolated Lactic Acid Bacteria. Applied Biochemistry and Biotechnology, 2008, 151, 244-255.	2.9	46
43	Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars. Journal of Biotechnology, 2016, 230, 63-71.	3.8	45
44	Biodegradation of Biopolymers. , 2017, , 739-755.		45
45	Exposition of antitumour activity of a chemically characterized exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510. Biologia (Poland), 2013, 68, 1041-1047.	1.5	41
46	Simultaneous saccharification and L-(+)-lactic acid fermentation of protease-treated wheat bran using mixed culture of lactobacilli. Biotechnology Letters, 2006, 28, 1823-1826.	2.2	38
47	l-leucine aminopeptidase production by filamentous Aspergillus fungi. Letters in Applied Microbiology, 2005, 41, 498-504.	2.2	37
48	Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases. Applied Microbiology and Biotechnology, 2020, 104, 5243-5257.	3.6	37
49	Synthesis of -amylase by Aspergillus oryzae in solid-state fermentation. Journal of Basic Microbiology, 2002, 42, 320-326.	3.3	36
50	Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products. Applied Microbiology and Biotechnology, 2012, 93, 95-106.	3.6	35
51	Molecular characterization of an exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510 and its efficacy to improve the texture of starchy food. Journal of Food Science and Technology, 2014, 51, 4012-4018.	2.8	34
52	An overview of functional genomics and relevance of glycosyltransferases in exopolysaccharide production by lactic acid bacteria. International Journal of Biological Macromolecules, 2021, 184, 1014-1025.	7.5	34
53	Folateâ€producing lactic acid bacteria from cow's milk with probiotic characteristics. International Journal of Dairy Technology, 2010, 63, 339-348.	2.8	31
54	Antifungal, Anticancer and Aminopeptidase Inhibitory Potential of a Phenazine Compound Produced by Lactococcus BSN307. Indian Journal of Microbiology, 2016, 56, 411-416.	2.7	31

#	Article	IF	CITATIONS
55	Soluble and Bound Hydroxycinnamates in Coffee Pulp (<i>Coffea arabica</i>) from Seven Cultivars at Three Ripening Stages. Journal of Agricultural and Food Chemistry, 2014, 62, 7869-7876.	5.2	30
56	Physicochemical Characterization of an Exopolysaccharide Produced by a Newly Isolated Weissella cibaria. Applied Biochemistry and Biotechnology, 2015, 176, 440-453.	2.9	30
57	Co-expression of endoglucanase and β-glucosidase in Corynebacterium glutamicum DM1729 towards direct lysine fermentation from cellulose. Bioresource Technology, 2016, 213, 239-244.	9.6	30
58	L(+)-Lactic acid recovery from cassava bagasse based fermented medium using anion exchange resins. Brazilian Archives of Biology and Technology, 2008, 51, 1241-1248.	0.5	29
59	Lactococcus garvieae subsp. bovis subsp. nov., lactic acid bacteria isolated from wild gaur (Bos) Tj ETQq1 1 0.784 Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3805-3809.	4314 rgBT 1.7	/Overlock 10 29
60	Folate production using Lactococcus lactis ssp cremoris with implications for fortification of skim milk and fruit juices. LWT - Food Science and Technology, 2011, 44, 1859-1864.	5.2	28
61	Encapsulated Lactococcus lactis with enhanced gastrointestinal survival for the development of folate enriched functional foods. Bioresource Technology, 2015, 188, 226-230.	9.6	27
62	Augmentation of a Microbial Consortium for Enhanced Polylactide (PLA) Degradation. Indian Journal of Microbiology, 2016, 56, 59-63.	2.7	27
63	Molecular cloning, overexpression and biochemical characterization of hypothetical β-lactamases of <i>Mycobacterium tuberculosis</i> H37Rv. Journal of Applied Microbiology, 2008, 105, 59-67.	3.1	26
64	Statistical optimization of l-leucine amino peptidase production from Streptomyces gedanensis IFO 13427 under submerged fermentation using response surface methodology. Biochemical Engineering Journal, 2009, 43, 64-71.	3.6	25
65	Detoxification of acidic biorefinery waste liquor for production of high value amino acid. Bioresource Technology, 2016, 213, 270-275.	9.6	25
66	Molecular advances in microbial aminopeptidases. Bioresource Technology, 2017, 245, 1757-1765.	9.6	24
67	Multifunctional ZnOâ€biopolymer nanocomposite coatings for healthâ€care polymer foams and fabrics. Journal of Applied Polymer Science, 2012, 126, E233.	2.6	23
68	Fermentative Production of N-Alkylated Glycine Derivatives by Recombinant Corynebacterium glutamicum Using a Mutant of Imine Reductase DpkA From Pseudomonas putida. Frontiers in Bioengineering and Biotechnology, 2019, 7, 232.	4.1	22
69	Production of low-calorie structured lipids from spent coffee grounds or olive pomace crude oils catalyzed by immobilized lipase in magnetic nanoparticles. Bioresource Technology, 2020, 307, 123223.	9.6	22
70	Production of L(+) lactic acid from cassava starch hydrolyzate by immobilizedLactobacillus delbrueckii. Journal of Basic Microbiology, 2007, 47, 25-30.	3.3	21
71	Polyurethane foam as an inert carrier for the production of L(+)-lactic acid by Lactobacillus casei under solid-state fermentation. Letters in Applied Microbiology, 2007, 44, 582-587.	2.2	21
72	Preparation of poly(l-lactide) blends and biodegradation by Lentzea waywayandensis. Biotechnology Letters, 2012, 34, 2031-2035.	2.2	20

#	Article	IF	CITATIONS
73	Engineering bio-mimicking functional vesicles with multiple compartments for quantifying molecular transport. Chemical Science, 2020, 11, 4669-4679.	7.4	20
74	Aminopeptidase from <i>Streptomyces gedanensis</i> as a useful Tool for Protein Hydrolysateâ€fPreparations with Improved Functional Properties. Journal of Food Science, 2012, 77, C791-7.	3.1	19
75	Synthesis, Colloidal Properties and Cytotoxicity of Biopolymer Nanoparticles. Applied Biochemistry and Biotechnology, 2014, 174, 2181-2194.	2.9	19
76	Simultaneous saccharification and fermentation (SSF) of jackfruit seed powder (JFSP) to l -lactic acid and to polylactide polymer. Bioresource Technology, 2016, 213, 283-288.	9.6	19
77	Biorefining of wheat bran for the purification of ferulic acid. Biocatalysis and Agricultural Biotechnology, 2018, 15, 304-310.	3.1	19
78	Microbial Synthesis of Chitinase in Solid Cultures and Its Potential as a Biocontrol Agent Against Phytopathogenic Fungus <i>Colletotrichum gloeosporioides</i> . Applied Biochemistry and Biotechnology, 2005, 127, 001-016.	2.9	18
79	Heterologous expression of genes for bioconversion of xylose to xylonic acid in Corynebacterium glutamicum and optimization of the bioprocess. AMB Express, 2020, 10, 68.	3.0	16
80	Health Benefits of Exopolysaccharides in Fermented Foods. , 2017, , 49-62.		15
81	Production of Biopolyamide Precursors 5-Amino Valeric Acid and Putrescine From Rice Straw Hydrolysate by Engineered Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2021, 9, 635509.	4.1	15
82	Fermentation and recovery of L-glutamic acid from cassava starch hydrolysate by ion-exchange resin column. Revista De Microbiologia, 1999, 30, 258-264.	0.1	15
83	An overview of the metabolically engineered strains and innovative processes used for the value addition of biomass derived xylose to xylitol and xylonic acid. Bioresource Technology, 2022, 345, 126548.	9.6	15
84	SERS and Antibacterial Active Green Synthesized Gold Nanoparticles. Plasmonics, 2012, 7, 515-524.	3.4	14
85	Co-culturing of Lactobacillus paracasei subsp. paracasei with a Lactobacillus delbrueckii subsp. delbrueckii Mutant to Make High Cell Density for Increased Lactate Productivity from Cassava Bagasse Hydrolysate. Current Microbiology, 2011, 62, 790-794.	2.2	13
86	The divergent roles of sortase in the biology of Gram-positive bacteria. Cell Surface, 2021, 7, 100055.	3.0	13
87	Lipoglycans Contribute to Innate Immune Detection of Mycobacteria. PLoS ONE, 2011, 6, e28476.	2.5	13
88	Strain improvement of Lactobacillus delbrueckii using nitrous acid mutation for l-lactic acid production. World Journal of Microbiology and Biotechnology, 2008, 24, 3105-3109.	3.6	12
89	Production of leucine amino peptidase in lab scale bioreactors using Streptomyces gedanensis. Bioresource Technology, 2011, 102, 8171-8178.	9.6	12
90	Proline-Specific Extracellular Aminopeptidase Purified from Streptomyces lavendulae. Applied Biochemistry and Biotechnology, 2011, 163, 994-1001.	2.9	12

#	Article	IF	CITATIONS
91	Cassava starch hydrolysate as sustainable carbon source for exopolysaccharide production by Lactobacillus plantarum. Bioresource Technology Reports, 2019, 6, 85-88.	2.7	12
92	Lipase of <i>Pseudomonas guariconesis</i> as an additive in laundry detergents and transesterification biocatalysts. Journal of Basic Microbiology, 2020, 60, 112-125.	3.3	12
93	Effect of different carbon sources on growth and glutamic acid fermentation byBrevibacterium sp Journal of Basic Microbiology, 1995, 35, 249-254.	3.3	11
94	Arginine specific aminopeptidase from Lactobacillus brevis. Brazilian Archives of Biology and Technology, 2010, 53, 1443-1450.	0.5	11
95	Folate fortification of skim milk by a probiotic Lactococcus lactis CM28 and evaluation of its stability in fermented milk on cold storage. Journal of Food Science and Technology, 2014, 52, 3513-9.	2.8	11
96	Metabolic Engineering for Valorization of Agri- and Aqua-Culture Sidestreams for Production of Nitrogenous Compounds by Corynebacterium glutamicum. Frontiers in Microbiology, 2022, 13, 835131.	3.5	11
97	Comparative Study of Amidase Production by Free and Immobilized <1>Escherichia coli 1 Cells. Applied Biochemistry and Biotechnology, 2005, 120, 097-108.	2.9	10
98	Purification and Biochemical Characterization of Methionine Aminopeptidase (MetAP) from Mycobacterium smegmatis mc2155. Applied Biochemistry and Biotechnology, 2008, 151, 512-521.	2.9	10
99	Characterization of leucine amino peptidase from Streptomyces gedanensis and its applications for protein hydrolysis. Process Biochemistry, 2012, 47, 234-242.	3.7	10
100	Star-Shaped Polylactide Dipyridamole Conjugated to 5-Fluorouracil and 4-Piperidinopiperidine Nanocarriers for Bioimaging and Dual Drug Delivery in Cancer Cells. ACS Applied Polymer Materials, 2021, 3, 737-756.	4.4	10
101	Accomplishment of probiotics in human health pertaining to immunoregulation and disease control. Clinical Nutrition ESPEN, 2021, 44, 26-37.	1.2	10
102	Bioactives of Microbes Isolated from Western Ghat Belt of Kerala Show β-Lactamase Inhibition along with Wide Spectrum Antimicrobial Activity. Applied Biochemistry and Biotechnology, 2012, 167, 1753-1762.	2.9	9
103	Biochemical characterization of recombinant methionine aminopeptidases (MAPs) from Mycobacterium tuberculosis H37Rv. Molecular and Cellular Biochemistry, 2012, 365, 191-202.	3.1	9
104	Detecting the structural assembly pathway of human antimicrobial peptide pores at single-channel level. Biomaterials Science, 2019, 7, 3226-3237.	5.4	9
105	Urease activity in a glutamate producing Brevibacterium sp Process Biochemistry, 1996, 31, 471-475.	3.7	7
106	Production of L-leucine aminopeptidase by selected Streptomyces isolates. Journal of Applied Microbiology, 2007, 104, 071003000434005-???.	3.1	7
107	Unveiling aminopeptidase P from Streptomyces lavendulae: Molecular cloning, expression and biochemical characterization. Enzyme and Microbial Technology, 2014, 55, 7-13.	3.2	7
108	Solid-state fermentation for the production of biomass valorizing feruloyl esterase. Biocatalysis and Agricultural Biotechnology, 2016, 7, 7-13.	3.1	7

K Madhavan Nampoothiri

#	Article	IF	CITATIONS
109	Integrated bioprocess for structured lipids, emulsifiers and biodiesel production using crude acidic olive pomace oils. Bioresource Technology, 2022, 346, 126646.	9.6	7
110	REVIEW: Genome shuffling: A new trend in improved bacterial production of lactic acid. Industrial Biotechnology, 2010, 6, 164-169.	0.8	6
111	An Improved Bioprocess for Extracellular l-Leucine Amino Peptidase Production Using Streptomyces gedanensis. Current Microbiology, 2011, 62, 1009-1016.	2.2	6
112	Facile strategy for the development of polyglucopyranose–silver hydrogel/films for antimicrobial applications. RSC Advances, 2016, 6, 113648-113656.	3.6	6
113	Biotechnological Production of Enzymes Using Agro-Industrial Wastes. , 2016, , 313-330.		6
114	In silico analysis of nitrilase-3 protein from Corynebacterium glutamicum for bioremediation of nitrile herbicides. Journal of Genetic Engineering and Biotechnology, 2022, 20, 51.	3.3	5
115	Molecular cloning, overexpression and characterization of the raw-starch-digesting α-amylase of Bacillus amyloliquefaciens. Biologia (Poland), 2010, 65, 392-398.	1.5	4
116	Corynebacterium glutamicum. , 2014, , 504-517.		4
117	Biosynthesis, recovery and purification of l-lysine from jackfruit seed (JFS) hydrolysate by Corynebacterium glutamicum DM 1729. Biocatalysis and Agricultural Biotechnology, 2015, 4, 506-513.	3.1	4
118	Microbial Aminopeptidases. , 2017, , 491-507.		4
119	Valorization of paper industry rejects by combined thermo-chemical pretreatment and biological conversion to L-lysine. Environmental Technology and Innovation, 2021, 24, 101882.	6.1	4
120	Insights into the biochemical and functional characterization of sortase E transpeptidase of <i>Corynebacterium glutamicum</i> . Biochemical Journal, 2019, 476, 3835-3847.	3.7	4
121	Glycine in the conserved motif III modulates the thermostability and oxidative stress resistance of peptide deformylase in Mycobacterium tuberculosis. FEMS Microbiology Letters, 2011, 320, 40-47.	1.8	3
122	White Biotechnology for Amino Acids. , 2015, , 445-471.		3
123	Recapitulation of stability diversity of microbial α-amylases. Amylase, 2020, 4, 11-23.	1.6	3
124	Amino-Based Products from Biomass and Microbial Amino Acid Production. , 2014, , 337-352.		2
125	Antimicrobial activity and cytotoxicity trait of a bioactive peptide purified from Lactococcus garvieae subsp. bovis BSN307 T. Letters in Applied Microbiology, 2021, 72, 706-713.	2.2	2
126	Synthesis and Characterization of Transparent Biodegradable Chitosan: Exopolysaccharide Composite Films Plasticized by Bio-Derived 1,3-Propanediol. Sustainable Chemistry, 2021, 2, 49-62.	4.7	2

#	Article	IF	CITATIONS
127	Extracellular methionine amino peptidase (MAP) production by Streptomyces gedanensis in solid-state fermentation. Brazilian Archives of Biology and Technology, 2014, 57, 187-193.	0.5	2
128	New Horizons in Biotechnology – NHBT 2015. Bioresource Technology, 2016, 213, 1.	9.6	1
129	Xylose Dehydrogenase Immobilized on Ferromagnetic Nanoparticles for Bioconversion of Xylose to Xylonic Acid. Bioconjugate Chemistry, 2022, 33, 948-955.	3.6	1
130	Phytase. , 2006, , 359-380.		0
131	Arginine Specific Aminopeptidase from Lactobacillus brevis. Brazilian Archives of Biology and Technology, 2011, 54, 133-133.	0.5	0