Roberta Malaguarnera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9168228/publications.pdf

Version: 2024-02-01

39 papers

1,884

304743 22 h-index 315739 38 g-index

39 all docs 39 docs citations

39 times ranked 2856 citing authors

#	Article	IF	CITATIONS
1	Orobanche crenata Forssk. Extract Affects Human Breast Cancer Cell MCF-7 Survival and Viral Replication. Cells, 2022, 11, 1696.	4.1	3
2	Molecular Effects of Chronic Exposure to Palmitate in Intestinal Organoids: A New Model to Study Obesity and Diabetes. International Journal of Molecular Sciences, 2022, 23, 7751.	4.1	2
3	High Glucose Exposure Impairs L-Cell Differentiation in Intestinal Organoids: Molecular Mechanisms and Clinical Implications. International Journal of Molecular Sciences, 2021, 22, 6660.	4.1	17
4	Glucagon as a Therapeutic Approach to Severe Hypoglycemia: After 100 Years, Is It Still the Antidote of Insulin?. Biomolecules, 2021, 11, 1281.	4.0	5
5	Coffee Restores Expression of IncRNAs Involved in Steatosis and Fibrosis in a Mouse Model of NAFLD. Nutrients, 2021, 13, 2952.	4.1	19
6	Recent insights into the pathogenesis of autoimmune hypophysitis. Expert Review of Clinical Immunology, 2021, 17, 1175-1185.	3.0	7
7	Candidate genes of SARS-CoV-2 gender susceptibility. Scientific Reports, 2021, 11, 21968.	3.3	14
8	Clinical and Molecular Biomarkers for Diagnosis and Staging of NAFLD. International Journal of Molecular Sciences, 2021, 22, 11905.	4.1	34
9	Editorial on the Special Issue: "Pancreatic Islets of Langerhans: Not Only Beta-Cells― Biomolecules, 2021, 11, 1646.	4.0	O
10	Novel Mechanisms of Tumor Promotion by the Insulin Receptor Isoform A in Triple-Negative Breast Cancer Cells. Cells, 2021, 10, 3145.	4.1	14
11	Direct Effects of D-Chiro-Inositol on Insulin Signaling and Glucagon Secretion of Pancreatic Alpha Cells. Biomolecules, 2020, 10, 1404.	4.0	11
12	Circulating Coding and Long Non-Coding RNAs as Potential Biomarkers of Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences, 2020, 21, 8812.	4.1	21
13	Thyroid Cancer and Circadian Clock Disruption. Cancers, 2020, 12, 3109.	3.7	21
14	The entero-insular axis: a journey in the physiopathology of diabetes. Exploration of Medicine, 2020, 1, .	1.5	1
15	DDR1 regulates thyroid cancer cell differentiation via IGF-2/IR-A autocrine signaling loop. Endocrine-Related Cancer, 2019, 26, 197-214.	3.1	38
16	Insulin/IGF signaling and discoidin domain receptors: An emerging functional connection. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 118522.	4.1	25
17	Insulin Receptor Isoform A Modulates Metabolic Reprogramming of Breast Cancer Cells in Response to IGF2 and Insulin Stimulation. Cells, 2019, 8, 1017.	4.1	23
18	A novel functional crosstalk between DDR1 and the IGF axis and its relevance for breast cancer. Cell Adhesion and Migration, 2018, 12, 1-10.	2.7	24

#	Article	IF	Citations
19	The Emerging Role of Insulin Receptor Isoforms in Thyroid Cancer: Clinical Implications and New Perspectives. International Journal of Molecular Sciences, 2018, 19, 3814.	4.1	33
20	Editorial: Clinical and Molecular Epidemiology of Thyroid Cancer of Follicular Origin. Frontiers in Endocrinology, 2018, 9, 67.	3.5	7
21	Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocrine Reviews, 2017, 38, 379-431.	20.1	270
22	PPAR- \hat{l}^3 Agonists As Antineoplastic Agents in Cancers with Dysregulated IGF Axis. Frontiers in Endocrinology, 2017, 8, 31.	3.5	72
23	Insulin Resistance: Any Role in the Changing Epidemiology of Thyroid Cancer?. Frontiers in Endocrinology, 2017, 8, 314.	3.5	42
24	Discoidin domain receptor 1 modulates insulin receptor signaling and biological responses in breast cancer cells. Oncotarget, 2017, 8, 43248-43270.	1.8	35
25	IGF-I induces upregulation of DDR1 collagen receptor in breast cancer cells by suppressing MIR-199a-5p through the PI3K/AKT pathway. Oncotarget, 2016, 7, 7683-7700.	1.8	69
26	Novel Aspects Concerning the Functional Cross-Talk between the Insulin/IGF-I System and Estrogen Signaling in Cancer Cells. Frontiers in Endocrinology, 2015, 6, 30.	3.5	42
27	Thyrospheres From Normal or Malignant Thyroid Tissue Have Different Biological, Functional, and Genetic Features. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1168-E1178.	3.6	29
28	Novel cross-talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses. Oncotarget, 2015, 6, 16084-16105.	1.8	57
29	The Emerging Role of Insulin and Insulin-Like Growth Factor Signaling in Cancer Stem Cells. Frontiers in Endocrinology, 2014, 5, 10.	3.5	122
30	Switch in Signaling Control of mTORC1 Activity After Oncoprotein Expression in Thyroid Cancer Cell Lines. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1976-E1987.	3.6	22
31	Metformin Inhibits Androgen-Induced IGF-IR Up-Regulation in Prostate Cancer Cells by Disrupting Membrane-Initiated Androgen Signaling. Endocrinology, 2014, 155, 1207-1221.	2.8	50
32	Chronic Exposure to GLP-1 Increases GLP-1 Synthesis and Release in a Pancreatic Alpha Cell Line ($\hat{l}\pm$ -TC1): Evidence of a Direct Effect of GLP-1 on Pancreatic Alpha Cells. PLoS ONE, 2014, 9, e90093.	2.5	38
33	The Insulin and IGF-I Pathway in Endocrine Glands Carcinogenesis. Journal of Oncology, 2012, 2012, 1-19.	1.3	23
34	The Insulin Receptor: A New Target for Cancer Therapy. Frontiers in Endocrinology, 2011, 2, 93.	3.5	72
35	Insulin Receptor Isoforms and Insulin-Like Growth Factor Receptor in Human Follicular Cell Precursors from Papillary Thyroid Cancer and Normal Thyroid. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 766-774.	3.6	130
36	Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1615-1620.	7.1	183

#	Article	IF	CITATIONS
37	Insulin receptor and cancer. Endocrine-Related Cancer, 2011, 18, R125-R147.	3.1	233
38	TAp73α Increases p53 Tumor Suppressor Activity in Thyroid Cancer Cells via the Inhibition of Mdm2-Mediated Degradation. Molecular Cancer Research, 2008, 6, 64-77.	3.4	26
39	The p53-homologue p63 may promote thyroid cancer progression. Endocrine-Related Cancer, 2005, 12, 953-971.	3.1	50