List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9167940/publications.pdf Version: 2024-02-01

WELXI HUANC

#	Article	IF	CITATIONS
1	An improved spectral method and experimental tests for the low-frequency broadband noise of marine propellers. Journal of Marine Science and Technology, 2022, 27, 604-618.	2.9	0
2	Vortex dynamics and hydrodynamic performance enhancement mechanism in batoid fish oscillatory swimming. Journal of Fluid Mechanics, 2022, 930, .	3.4	32
3	Numerical model and hydrodynamic performance of tuna finlets. Theoretical and Applied Mechanics Letters, 2022, 12, 100322.	2.8	5
4	Large-eddy simulation of three-dimensional aerofoil tip-gap flow. Ocean Engineering, 2022, 243, 110315.	4.3	9
5	Rescaling the near-wall predictive model for passive scalars in turbulent channel flow. Physics of Fluids, 2022, 34, .	4.0	0
6	Scaling of rough-wall turbulence in a transitionally rough regime. Physics of Fluids, 2022, 34, .	4.0	6
7	Physical models and vortex dynamics of swimming and flying: a review. Acta Mechanica, 2022, 233, 1249-1288.	2.1	11
8	Deep reinforcement learning for active control of flow over a circular cylinder with rotational oscillations. International Journal of Heat and Fluid Flow, 2022, 96, 109008.	2.4	10
9	Wall-attached structures over a traveling wavy boundary: Turbulent velocity fluctuations. Physical Review Fluids, 2021, 6, .	2.5	12
10	A self-propelled flexible plate with a keel-like structure. Physics of Fluids, 2021, 33, .	4.0	8
11	Off-wall boundary conditions for large-eddy simulation based on near-wall turbulence prediction. Physics of Fluids, 2021, 33, 045125.	4.0	6
12	A near-wall predictive model for passive scalars using minimal flow unit. Physics of Fluids, 2021, 33, 045119.	4.0	3
13	A hybrid immersed boundary/wall-model approach for large-eddy simulation of high-Reynolds-number turbulent flows. International Journal of Heat and Fluid Flow, 2021, 88, 108769.	2.4	11
14	Variations of flight patterns for falling flexible plates. Physics of Fluids, 2021, 33, .	4.0	10
15	Synthetic near-wall small-scale turbulence and its application in wall-modeled large-eddy simulation. Physics of Fluids, 2021, 33, 095102.	4.0	3
16	Numerical study on wetted and cavitating tip-vortical flows around an elliptical hydrofoil: Interplay of cavitation, vortices, and turbulence. Physics of Fluids, 2021, 33, .	4.0	21
17	Wall-attached structures over a traveling wavy boundary: Scalar transport. Physics of Fluids, 2021, 33, 105115.	4.0	4
18	Evolutionary Optimisation for Reduction of the Low-Frequency Discrete-Spectrum Force of Marine Propeller Based on a Data-Driven Surrogate Model. Journal of Marine Science and Engineering, 2021, 9, 18.	2.6	3

#	Article	IF	CITATIONS
19	Transient growth in turbulent particle-laden channel flow. Acta Mechanica Sinica/Lixue Xuebao, 2020, 36, 1-11.	3.4	7
20	Specialization of tuna: A numerical study on the function of caudal keels. Physics of Fluids, 2020, 32, .	4.0	22
21	Scaling of rough-wall turbulence by the roughness height and steepness. Journal of Fluid Mechanics, 2020, 900, .	3.4	24
22	A monolithic projection framework for constrained FSI problems with the immersed boundary method. Computer Methods in Applied Mechanics and Engineering, 2020, 371, 113332.	6.6	11
23	Active control for drag reduction of turbulent channel flow based on convolutional neural networks. Physics of Fluids, 2020, 32, .	4.0	32
24	Prediction and optimisation of low-frequency discrete- and broadband-spectrum marine propeller forces. Applied Ocean Research, 2020, 98, 102114.	4.1	13
25	The reduction of noise induced by flow over an open cavity. International Journal of Heat and Fluid Flow, 2020, 82, 108560.	2.4	6
26	Non-monotonic effect of mass loading on turbulence modulations in particle-laden channel flow. Physics of Fluids, 2020, 32, .	4.0	28
27	Swimming strategy of settling elongated micro-swimmers by reinforcement learning. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	13
28	Surface wave effects on energy transfer in overlying turbulent flow. Journal of Fluid Mechanics, 2020, 893, .	3.4	16
29	Rough-wall turbulence in minimal flow units with rod-roughened walls. Physics of Fluids, 2020, 32, 115120.	4.0	7
30	Space–time characteristics of turbulence in minimal flow units. Physics of Fluids, 2020, 32, .	4.0	4
31	Assessment of force models on finite-sized particles at finite Reynolds numbers. Applied Mathematics and Mechanics (English Edition), 2020, 41, 953-966.	3.6	2
32	Data-driven construction of a reduced-order model for supersonic boundary layer transition. Journal of Fluid Mechanics, 2019, 874, 1096-1114.	3.4	24
33	A dynamic wall model for large eddy simulation of turbulent flow over complex/moving boundaries based on the immersed boundary method. Physics of Fluids, 2019, 31, .	4.0	38
34	Coupled states of dual side-by-side inverted flags in a uniform flow. Journal of Fluids and Structures, 2019, 91, 102768.	3.4	8
35	Hydrodynamic design of an advanced submerged propulsion. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 6367-6382.	2.1	2
36	Hydrodynamics of marine propulsion. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 6291-6292.	2.1	0

#	Article	IF	CITATIONS
37	Drag reduction in turbulent flow along a cylinder by circumferential oscillating Lorentz force. Physics of Fluids, 2019, 31, .	4.0	16
38	Relationship between wall shear stresses and streamwise vortices. Applied Mathematics and Mechanics (English Edition), 2019, 40, 381-396.	3.6	4
39	Direct numerical simulation of a turbulent boundary layer over an anisotropic compliant wall. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 384-400.	3.4	6
40	Hydrodynamics of a three-dimensional self-propelled flexible plate. Physics of Fluids, 2019, 31, .	4.0	32
41	Coherent structures in streamwise rotating channel flow. Physics of Fluids, 2019, 31, .	4.0	16
42	Linear optimal control of transient growth in turbulent channel flows. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 729-739.	3.4	1
43	On the role of vortical structures in aerodynamic performance of a hovering mosquito. Physics of Fluids, 2019, 31, .	4.0	29
44	Recent trends and progress in the immersed boundary method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 7617-7636.	2.1	107
45	Stability analysis of rotational dynamics of ellipsoids in simple shear flow. Physics of Fluids, 2019, 31, 023301.	4.0	10
46	On rotational dynamics of a finite-sized ellipsoidal particle in shear flows. Acta Mechanica, 2019, 230, 449-467.	2.1	8
47	Drag reduction in turbulent flows along a cylinder by streamwise-travelling waves of circumferential wall velocity. Journal of Fluid Mechanics, 2019, 862, 75-98.	3.4	13
48	Vortical structures in the wake of falling plates. Journal of Visualization, 2019, 22, 15-24.	1.8	7
49	Very large-scale motions in turbulent flows over streamwise traveling wavy boundaries. Physical Review Fluids, 2019, 4, .	2.5	21
50	Prediction of near-wall turbulence using minimal flow unit. Journal of Fluid Mechanics, 2018, 841, 654-673.	3.4	27
51	A Sharp-Interface Immersed Boundary Method for Simulating Incompressible Flows with Arbitrarily Deforming Smooth Boundaries. International Journal of Computational Methods, 2018, 15, 1750080.	1.3	27
52	Amplitude modulation and extreme events in turbulent channel flow. Acta Mechanica Sinica/Lixue Xuebao, 2018, 34, 1-9.	3.4	19
53	Progression of heavy plates from stable falling to tumbling flight. Journal of Fluid Mechanics, 2018, 850, 1009-1031.	3.4	14
54	An improved penalty immersed boundary method for multiphase flow simulation. International Journal for Numerical Methods in Fluids, 2018, 88, 447-462.	1.6	9

#	Article	IF	CITATIONS
55	Direct numerical simulation of turbulent flows through concentric annulus with circumferential oscillation of inner wall. Applied Mathematics and Mechanics (English Edition), 2018, 39, 1267-1276.	3.6	1
56	Effect of active control on linear transient growth in turbulent channel flow. Journal of Turbulence, 2017, 18, 203-218.	1.4	3
57	Large eddy simulation of flow and scalar transport in a vegetated channel. Environmental Fluid Mechanics, 2017, 17, 497-519.	1.6	27
58	Direct numerical simulation of turbulent boundary layer over a compliant wall. Journal of Fluids and Structures, 2017, 71, 126-142.	3.4	15
59	On near-wall turbulence in minimal flow units. International Journal of Heat and Fluid Flow, 2017, 65, 192-199.	2.4	13
60	Second-order curved interface treatments of the lattice Boltzmann method for convection-diffusion equations with conjugate interfacial conditions. Computers and Fluids, 2017, 144, 60-73.	2.5	8
61	An autonomous flexible propulsor in a quiescent flow. International Journal of Heat and Fluid Flow, 2017, 68, 151-157.	2.4	9
62	Numerical study of aircraft wake vortex evolution near ground in stable atmospheric boundary layer. Chinese Journal of Aeronautics, 2017, 30, 1866-1876.	5.3	10
63	Large-Eddy Simulation of Flow Over a Vegetation-Like Canopy Modelled as Arrays of Bluff-Body Elements. Boundary-Layer Meteorology, 2017, 165, 233-249.	2.3	10
64	Effects of Taylor-Görtler vortices on turbulent flows in a spanwise-rotating channel. Physics of Fluids, 2016, 28, .	4.0	21
65	Fluid–structure interactions with applications to biology. Acta Mechanica Sinica/Lixue Xuebao, 2016, 32, 977-979.	3.4	10
66	Active control for drag reduction in turbulent channel flow: the opposition control schemes revisited. Fluid Dynamics Research, 2016, 48, 055501.	1.3	16
67	An efficient immersed boundary projection method for flow over complex/moving boundaries. Computers and Fluids, 2016, 140, 122-135.	2.5	37
68	Self-propelled heaving and pitching flexible fin in a quiescent flow. International Journal of Heat and Fluid Flow, 2016, 62, 273-281.	2.4	34
69	Origin of effectiveness degradation in active drag reduction control of turbulent channel flow at Re _{ï,,} Â= 1000. Journal of Turbulence, 2016, 17, 758-786.	1.4	25
70	Suboptimal control of wall turbulence with arrayed dimple actuators for drag reduction. Journal of Turbulence, 2016, 17, 379-399.	1.4	3
71	Actively flapping tandem flexible flags in a viscous flow. Journal of Fluid Mechanics, 2015, 780, 120-142.	3.4	41
72	Migration of Elastic Capsules by an Optical Force in a Uniform flow. Procedia IUTAM, 2015, 16, 50-59.	1.2	1

#	Article	IF	CITATIONS
73	Vortex interactions between forewing and hindwing of dragonfly in hovering flight. Theoretical and Applied Mechanics Letters, 2015, 5, 24-29.	2.8	24
74	A ghost-cell immersed boundary method for large eddy simulation of flows in complex geometries. International Journal of Computational Fluid Dynamics, 2015, 29, 12-25.	1.2	8
75	Direct numerical simulation of spatially developing turbulent boundary layers with opposition control. Fluid Dynamics Research, 2015, 47, 025503.	1.3	15
76	Dynamics of prolate jellyfish with a jet-based locomotion. Journal of Fluids and Structures, 2015, 57, 331-343.	3.4	33
77	Direct numerical simulation of turbulent flow in a rotating square duct. Physics of Fluids, 2015, 27, .	4.0	17
78	On hairpin vortex generation from near-wall streamwise vortices. Acta Mechanica Sinica/Lixue Xuebao, 2015, 31, 139-152.	3.4	28
79	Synergistic Effects of Chiral Morphology and Reconfiguration in Cattail Leaves. Journal of Bionic Engineering, 2015, 12, 634-642.	5.0	21
80	Cross-type optical separation of elastic oblate capsules in a uniform flow. Journal of Applied Physics, 2015, 117, 034701.	2.5	3
81	Optimal transient growth in turbulent pipe flow. Applied Mathematics and Mechanics (English) Tj ETQq1 1 0.78	84314 rgB1 3.6	「/Oyerlock 10
82	Simulation of swimming oblate jellyfish with a paddling-based locomotion. Journal of Fluid Mechanics, 2014, 748, 731-755.	3.4	39
83	Strengthened opposition control for skin-friction reduction in wall-bounded turbulent flows. Journal of Turbulence, 2014, 15, 122-143.	1.4	27
84	Optical separation of ellipsoidal particles in a uniform flow. Physics of Fluids, 2014, 26, 062001.	4.0	10
85	Flapping dynamics of a flexible flag in a uniform flow. Fluid Dynamics Research, 2014, 46, 055517.	1.3	13
86	Coherent structures in wall turbulence and mechanism for drag reduction control. Science China: Physics, Mechanics and Astronomy, 2013, 56, 1053-1061.	5.1	12
87	Effect of active control on optimal structures in wall turbulence. Science China: Physics, Mechanics and Astronomy, 2013, 56, 290-297.	5.1	8
88	Interaction modes of multiple flexible flags in a uniform flow. Journal of Fluid Mechanics, 2013, 729, 563-583.	3.4	50
89	Transient response of enstrophy transport to opposition control in turbulent channel flow. Applied Mathematics and Mechanics (English Edition), 2013, 34, 127-138.	3.6	6
90	Optical levitation of a non-spherical particle in a loosely focused Gaussian beam. Optics Express, 2012, 20, 24068.	3.4	17

#	Article	IF	CITATIONS
91	Flexible ring flapping in a uniform flow. Journal of Fluid Mechanics, 2012, 707, 129-149.	3.4	12
92	Lateral migration of an elastic capsule by optical force in a uniform flow. Physical Review E, 2012, 86, 066306.	2.1	8
93	Multiple Modes of Filament Flapping in a Uniform Flow. Chinese Physics Letters, 2012, 29, 094702.	3.3	2
94	Simulation of small swimmer motions driven by tail/flagellum beating. Computers and Fluids, 2012, 55, 109-117.	2.5	19
95	Three-dimensional simulation of elastic capsules in shear flow by the penalty immersed boundary method. Journal of Computational Physics, 2012, 231, 3340-3364.	3.8	74
96	Flow-Induced Deformation of 3D Elastic Capsules. , 2011, , .		0
97	An Improved Penalty Immersed Boundary Method for Fluid-Flexible Body Interaction. , 2011, , .		0
98	An improved penalty immersed boundary method for fluid–flexible body interaction. Journal of Computational Physics, 2011, 230, 5061-5079.	3.8	67
99	A composite model for complex building street configuration in a large eddy simulation of local urban atmospheric environment. Science China: Physics, Mechanics and Astronomy, 2011, 54, 716-723.	5.1	6
100	Three-dimensional simulation of a flapping flag in a uniform flow. Journal of Fluid Mechanics, 2010, 653, 301-336.	3.4	158
101	Constructive and destructive interaction modes between two tandem flexible flags in viscous flow. Journal of Fluid Mechanics, 2010, 661, 511-521.	3.4	105
102	An immersed boundary method for fluid–flexible structure interaction. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 2650-2661.	6.6	132
103	Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method. International Journal for Numerical Methods in Fluids, 2008, 58, 263-286.	1.6	119
104	Simulation of liquid transfer between separating walls for modeling micro-gravure-offset printing. International Journal of Heat and Fluid Flow, 2008, 29, 1436-1446.	2.4	70
105	Improvement of mass source/sink for an immersed boundary method. International Journal for Numerical Methods in Fluids, 2007, 53, 1659-1671.	1.6	34
106	Vortex shedding from a circular cylinder near a moving wall. Journal of Fluids and Structures, 2007, 23, 1064-1076.	3.4	59
107	Simulation of flexible filaments in a uniform flow by the immersed boundary method. Journal of Computational Physics, 2007, 226, 2206-2228.	3.8	328
108	Transient response of Reynolds stress transport to spanwise wall oscillation in a turbulent channel flow. Physics of Fluids, 2005, 17, 018101-018101-4.	4.0	39