Tracy S P Heng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9167254/publications.pdf

Version: 2024-02-01

40 7,832 29 34 g-index

41 41 41 15229

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nature Immunology, 2012, 13, 1118-1128.	14.5	1,731
2	The Immunological Genome Project: networks of gene expression in immune cells. Nature Immunology, 2008, 9, 1091-1094.	14.5	1,576
3	Deciphering the transcriptional network of the dendritic cell lineage. Nature Immunology, 2012, 13, 888-899.	14.5	688
4	Activation of Thymic Regeneration in Mice and Humans following Androgen Blockade. Journal of Immunology, 2005, 175, 2741-2753.	0.8	431
5	Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nature Immunology, 2012, 13, 499-510.	14.5	416
6	Transcriptional insights into the CD8+ T cell response to infection and memory T cell formation. Nature Immunology, 2013, 14, 404-412.	14.5	303
7	Conservation and divergence in the transcriptional programs of the human and mouse immune systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2946-2951.	7.1	296
8	Molecular definition of the identity and activation of natural killer cells. Nature Immunology, 2012, 13, 1000-1009.	14.5	265
9	The transcriptional landscape of $\hat{l}\pm\hat{l}^2$ T cell differentiation. Nature Immunology, 2013, 14, 619-632.	14.5	256
10	Effects of Castration on Thymocyte Development in Two Different Models of Thymic Involution. Journal of Immunology, 2005, 175, 2982-2993.	0.8	207
11	Intrathymic programming of effector fates in three molecularly distinct $\hat{I}^3\hat{I}$ T cell subtypes. Nature Immunology, 2012, 13, 511-518.	14.5	185
12	Identification of transcriptional regulators in the mouse immune system. Nature Immunology, 2013, 14, 633-643.	14.5	179
13	A Network of High-Mobility Group Box Transcription Factors Programs Innate Interleukin-17 Production. Immunity, 2013, 38, 681-693.	14.3	153
14	Enhanced Immune System Regeneration in Humans Following Allogeneic or Autologous Hemopoietic Stem Cell Transplantation by Temporary Sex Steroid Blockade. Clinical Cancer Research, 2008, 14, 1138-1149.	7.0	117
15	Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells. Nature Immunology, 2013, 14, 90-99.	14.5	106
16	Transcriptomes of the B and T Lineages Compared by Multiplatform Microarray Profiling. Journal of Immunology, 2011, 186, 3047-3057.	0.8	97
17	Sex Steroid Ablation Enhances Lymphoid Recovery Following Autologous Hematopoietic Stem Cell Transplantation. Transplantation, 2005, 80, 1604-1613.	1.0	94
18	Mesenchymal stromal cell apoptosis is required for their therapeutic function. Nature Communications, 2021, 12, 6495.	12.8	91

#	Article	IF	Citations
19	Alveolar Macrophages Are Critical for the Inhibition of Allergic Asthma by Mesenchymal Stromal Cells. Journal of Immunology, 2013, 191, 5914-5924.	0.8	85
20	Gene Expression during the Generation and Activation of Mouse Neutrophils: Implication of Novel Functional and Regulatory Pathways. PLoS ONE, 2014, 9, e108553.	2.5	83
21	Differential splicing across immune system lineages. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14324-14329.	7.1	64
22	Sex Steroid Ablation Enhances Immune Reconstitution Following Cytotoxic Antineoplastic Therapy in Young Mice. Journal of Immunology, 2010, 184, 6014-6024.	0.8	56
23	ImmGen at 15. Nature Immunology, 2020, 21, 700-703.	14.5	55
24	De novo production of antigen-specific suppressor cells in vivo. Nature Protocols, 2006, 1, 653-661.	12.0	46
25	Variation and Genetic Control of Gene Expression in Primary Immunocytes across Inbred Mouse Strains. Journal of Immunology, 2014, 193, 4485-4496.	0.8	44
26	Lymph node fibroblastic reticular cell transplants show robust therapeutic efficacy in high-mortality murine sepsis. Science Translational Medicine, 2014, 6, 249ra109.	12.4	39
27	Consortium biology in immunology: the perspective from the Immunological Genome Project. Nature Reviews Immunology, 2012, 12, 734-740.	22.7	37
28	Biological Considerations in Scaling Up Therapeutic Cell Manufacturing. Frontiers in Pharmacology, 2020, 11, 654.	3.5	36
29	Getting back at nature: understanding thymic development and overcoming its atrophy. Current Opinion in Pharmacology, 2010, 10, 425-433.	3.5	34
30	Impact of Sex Steroid Ablation on Viral, Tumour and Vaccine Responses in Aged Mice. PLoS ONE, 2012, 7, e42677.	2.5	24
31	Thymospheres Are Formed by Mesenchymal Cells with the Potential to Generate Adipocytes, but Not Epithelial Cells. Cell Reports, 2017, 21, 934-942.	6.4	20
32	Stem cellsâ€"meet immunity. Journal of Molecular Medicine, 2009, 87, 1061-1069.	3.9	10
33	Secondary Lymphoid Organs in Mesenchymal Stromal Cell Therapy: More Than Just a Filter. Frontiers in Immunology, 0, 13, .	4.8	3
34	Establishment of Transplantation Tolerance via Minimal Conditioning in Aged Recipients. American Journal of Transplantation, 2014, 14, 2478-2490.	4.7	2
35	Lymph node stroma join the cancer support network. Cell Death and Differentiation, 2016, 23, 1899-1901.	11.2	2
36	Dissecting the molecular pathways of apoptosis in mesenchymal stromal cell therapy. Cytotherapy, 2019, 21, S85.	0.7	0

TRACY S P HENG

#	Article	IF	CITATIONS
37	Is mesenchymal stromal cell apoptosis necessary for their immunomodulatory capacity?. Cytotherapy, 2020, 22, S87.	0.7	O
38	Immunometabolic changes in resident macrophages underlie msc therapeutic effects. Cytotherapy, 2021, 23, S63-S64.	0.7	0
39	The Immunogenicity of Stem Cells and Thymus-Based Strategies to Minimise Immune Rejection. , 2013, , 201-223.		0
40	Fibroblastic Reticular Cells Provide a Supportive Niche for Lymph Node-Resident Macrophages. SSRN Electronic Journal, 0, , .	0.4	O