## JesÃ<sup>o</sup>s PicÃ<sup>3</sup>

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9165586/publications.pdf Version: 2024-02-01



Ιεςδος Ριςδ3

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Multi-Objective Optimization Tuning Framework for Kinetic Parameter Selection and Estimation.<br>Methods in Molecular Biology, 2022, 2385, 65-89.                        | 0.9 | 1         |
| 2  | Modeling and Optimization of a Molecular Biocontroller for the Regulation of Complex Metabolic<br>Pathways. Frontiers in Molecular Biosciences, 2022, 9, 801032.         | 3.5 | 1         |
| 3  | Stochastic Differential Equations for Practical Simulation of Gene Circuits. Methods in Molecular<br>Biology, 2021, 2229, 41-90.                                         | 0.9 | 2         |
| 4  | Gene Expression Space Shapes the Bioprocess Trade-Offs among Titer, Yield and Productivity. Applied Sciences (Switzerland), 2021, 11, 5859.                              | 2.5 | 1         |
| 5  | Gene variant space for biosensor-based dynamic regulation. , 2021, , 485-491.                                                                                            |     | 0         |
| 6  | RBS and Promoter Strengths Determine the Cell-Growth-Dependent Protein Mass Fractions and Their<br>Optimal Synthesis Rates. ACS Synthetic Biology, 2021, 10, 3290-3303.  | 3.8 | 11        |
| 7  | Multiobjective Identification of a Feedback Synthetic Gene Circuit. IEEE Transactions on Control Systems Technology, 2020, 28, 208-223.                                  | 5.2 | 6         |
| 8  | Revealing Time-Varying Joint Impedance With Kernel-Based Regression and Nonparametric Decomposition. IEEE Transactions on Control Systems Technology, 2020, 28, 224-237. | 5.2 | 10        |
| 9  | Extended Metabolic Biosensor Design for Dynamic Pathway Regulation of Cell Factories. IScience, 2020, 23, 101305.                                                        | 4.1 | 30        |
| 10 | Output Feedback Linearization of Turbidostats After Time Scaling. IEEE Transactions on Control<br>Systems Technology, 2019, 27, 1668-1676.                               | 5.2 | 3         |
| 11 | Characterization of Gene Circuit Parts Based on Multiobjective Optimization by Using Standard Calibrated Measurements. ChemBioChem, 2019, 20, 2653-2665.                 | 2.6 | 10        |
| 12 | Analysis of Transcriptional Feedback Strategy for Reducing Interaction in Gene Expression Processes.<br>IFAC-PapersOnLine, 2019, 52, 526-531.                            | 0.9 | 0         |
| 13 | Biomolecular signal tracker with fast time response IFAC-PapersOnLine, 2019, 52, 1-6.                                                                                    | 0.9 | 2         |
| 14 | Reference Conditioning Anti-windup for the Biomolecular Antithetic Controller. IFAC-PapersOnLine, 2019, 52, 156-162.                                                     | 0.9 | 3         |
| 15 | Fluorescence calibration and color equivalence for quantitative synthetic biology<br>IFAC-PapersOnLine, 2019, 52, 129-134.                                               | 0.9 | 2         |
| 16 | Global stabilisation of continuous bioreactors: Tools for analysis and design of feeding laws.<br>Automatica, 2018, 89, 340-348.                                         | 5.0 | 13        |
| 17 | Host-circuit interactions explain unexpected behavior of a gene circuit IFAC-PapersOnLine, 2018, 51, 86-89.                                                              | 0.9 | 5         |
| 18 | Flux-dependent graphs for metabolic networks. Npj Systems Biology and Applications, 2018, 4, 32.                                                                         | 3.0 | 29        |

JesÃ⁰s PicÃ<sup>3</sup>

| #   | ARTICLE.                                                                                                                                                                                                                                                                                                                                                                            | IF          | CITATIONS    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|
|     | work is partially supported by Spanish government and European Union (FEDER-CICYT) Tj ETQq1 1 0.784314 rgB                                                                                                                                                                                                                                                                          | Overlock    | 2 10 Tf 50 7 |
| 19  | thanks the support from the Ayudas para movilidad dentro del Programa para la Formación de<br>Personal Investigador (FPI) de la UPV para estancias 2016. A.V. thanks the Max Planck Society. the CSBD                                                                                                                                                                               | 0.9         | 3            |
| 20  | and the MPI-CBG. The authors are. IFAC-PapersOnLine, 2017, 50, 4472-4477.<br>Multi-objective identification of synthetic circuits stochastic models using flow flcytometry data. ,<br>2017, , .                                                                                                                                                                                     |             | 1            |
| 21  | Engineered Control of Genetic Variability Reveals Interplay among Quorum Sensing, Feedback<br>Regulation, and Biochemical Noise. ACS Synthetic Biology, 2017, 6, 1903-1912.<br>Parameter identification in synthetic biological circuits using multi-objective optimization * *This                                                                                                 | 3.8         | 22           |
|     | work is partially supported by Spanish government and European Union (FEDER-CICYT) Tj ETQq0 0 0 rgBT /Overlo                                                                                                                                                                                                                                                                        | ck 10 Tf 50 | ) 632 Td (C  |
| 22  | València and Becas Iberoamérica of Santander Group, Spain 2015. G.R.M. thanks the partial support provided by the postdoctoral fellowship BJT-304804/2014-2 from the National Council of Scientific and                                                                                                                                                                             | 0.9         | 2            |
| 23  | Technologic Developm, IFAC-PapersOnLine, 2016, 49, 77-82.<br>Contractivity of a genetic circuit with internal feedback and cell-to-cell communication * *This<br>research was partially funded by grant FEDER-CICYT DPI2014-55276-C5-1-R. Yadira Boada thanks grant<br>FPI/2013-3242 of the Universitat PolitÃ <sup>°</sup> cnica de Valencia IFAC-PapersOnLine, 2016, 49, 213-218. | 0.9         | 1            |
| 24  | PID controller tuning for unstable processes using a multi-objective optimisation design procedure.<br>IFAC-PapersOnLine, 2016, 49, 284-289.<br>Optimization Alternatives for Robust Model-based Design of Synthetic Biological Circuits**The                                                                                                                                       | 0.9         | 11           |
| 0.7 | research leading to these results has received funding from the European Union (FP7/2007-2013 under) Tj ETQq1                                                                                                                                                                                                                                                                       | 1 0.78431   | l4 rgBT /O√  |
| 25  | Development of Brazil (BIT-304804/2014-2). Yadira Boada thanks also grant FPI/2013-3242 of the                                                                                                                                                                                                                                                                                      | 0.9         | 3            |
| 26  | Universitat Polità cnica de Valencia IFAC-PapersOnLine, 2016, 49, 821-826.<br>PFA toolbox: a MATLAB tool for Metabolic Flux Analysis. BMC Systems Biology. 2016, 10, 46.                                                                                                                                                                                                            | 3.0         | 6            |
| 20  |                                                                                                                                                                                                                                                                                                                                                                                     | 0.0         | •            |
| 27  | Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case. BMC Systems Biology, 2016, 10, 27.                                                                                                                                                                                                       | 3.0         | 35           |
| 28  | Fusion of genomic, proteomic and phenotypic data: the case of potyviruses. Molecular BioSystems, 2016, 12, 253-261.                                                                                                                                                                                                                                                                 | 2.9         | 2            |
|     |                                                                                                                                                                                                                                                                                                                                                                                     |             |              |
| 29  | Improvement of a CLE stochastic simulation of gene synthetic network with quorum sensing and feedback in a cell population. , 2015, , .                                                                                                                                                                                                                                             |             | 7            |
| 30  | MCR-ALS on metabolic networks: Obtaining more meaningful pathways. Chemometrics and Intelligent                                                                                                                                                                                                                                                                                     | 3.5         | 11           |
|     | Laboratory Systems, 2015, 142, 293-303.                                                                                                                                                                                                                                                                                                                                             |             |              |
| 31  | Closing the Loop. Diabetes Technology and Therapeutics, 2015, 17, S-27-S-38.                                                                                                                                                                                                                                                                                                        | 4.4         | 0            |
| 32  | Topology analysis and visualization of Potyvirus protein-protein interaction network. BMC Systems<br>Biology 2014, 8, 129                                                                                                                                                                                                                                                           | 3.0         | 31           |
|     | 5665, 201, 6, 123.                                                                                                                                                                                                                                                                                                                                                                  |             |              |
| 33  | Validation of an FBA model for Pichia pastoris in chemostat cultures. BMC Systems Biology, 2014, 8, 142.                                                                                                                                                                                                                                                                            | 3.0         | 7            |
| 34  | Sufficient conditions for state observability in multi-substrate bioprocesses with additive growth dynamics. IEEE Latin America Transactions, 2014, 12, 928-934.                                                                                                                                                                                                                    | 1.6         | 2            |
|     |                                                                                                                                                                                                                                                                                                                                                                                     |             |              |
| 35  | Metabolic flux understanding of Pichia pastoris grown on heterogenous culture media.<br>Chemometrics and Intelligent Laboratory Systems, 2014, 134, 89-99.                                                                                                                                                                                                                          | 3.5         | 15           |
| 36  | Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm.<br>Automatica, 2013, 49, 534-539.                                                                                                                                                                                                                                                     | 5.0         | 50           |

Jesús PicÃ<sup>3</sup>

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Safety Auxiliary Feedback Element for the Artificial Pancreas in Type 1 Diabetes. IEEE Transactions on<br>Biomedical Engineering, 2013, 60, 2113-2122.                                                                  | 4.2 | 58        |
| 38 | Second-order sliding mode observer for multiple kinetic rates estimation in bioprocesses. Control Engineering Practice, 2013, 21, 1259-1265.                                                                            | 5.5 | 26        |
| 39 | Sliding Mode Reference Coordination of Constrained Feedback Systems. Mathematical Problems in Engineering, 2013, 2013, 1-11.                                                                                            | 1.1 | 0         |
| 40 | Specific Kinetic Rates Regulation in Multi-Substrate Fermentation Processes. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 42-47.                                              | 0.4 | 0         |
| 41 | Control of protein concentrations in heterogeneous cell populations. , 2013, , .                                                                                                                                        |     | 17        |
| 42 | UAV reference conditioning for formation control via set invariance and sliding modes*. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 317-322.                                 | 0.4 | 2         |
| 43 | Dynamic Metabolic Flux Analysis for Online Estimation of Recombinant Protein Productivity in Pichia pastoris Cultures. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 629-634.  | 0.4 | 1         |
| 44 | Reaction rate reconstruction from biomass concentration measurement in bioreactors using modified second-order sliding mode algorithms. Bioprocess and Biosystems Engineering, 2012, 35, 1615-1625.                     | 3.4 | 34        |
| 45 | A dynamic non-isothermal model for a hydrocracking reactor: Model development by the method of continuous lumping and application to an industrial unit. Journal of Process Control, 2012, 22, 1956-1965.               | 3.3 | 21        |
| 46 | Dynamic estimations of metabolic fluxes with constraint-based models and possibility theory. Journal of Process Control, 2012, 22, 1946-1955.                                                                           | 3.3 | 14        |
| 47 | Sliding mode reference conditioning for coordination in swarms of non-identical multi-agent systems. , 2012, , .                                                                                                        |     | 3         |
| 48 | Estimation of recombinant protein production in Pichia pastoris based on a constraint-based model.<br>Journal of Process Control, 2012, 22, 1139-1151.                                                                  | 3.3 | 6         |
| 49 | Nonlinear PI control of fed-batch processes for growth rate regulation. Journal of Process Control, 2012, 22, 789-797.                                                                                                  | 3.3 | 29        |
| 50 | Dynamical Systems Coordination via Sliding Mode Reference Conditioning*. IFAC Postprint Volumes<br>IPPV / International Federation of Automatic Control, 2011, 44, 11086-11091.                                         | 0.4 | 3         |
| 51 | Specific growth rate estimation in (fed-)batch bioreactors using second-order sliding observers.<br>Journal of Process Control, 2011, 21, 1049-1055.                                                                    | 3.3 | 28        |
| 52 | Possibilistic validation of a constraint-based model under data Scirccity: application to Pichia<br>pastoris cultures. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010,<br>43, 19-23. | 0.4 | 0         |
| 53 | Possibilistic estimation of metabolic fluxes during a batch process accounting for extracellular dynamics. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 24-29.                | 0.4 | 0         |
| 54 | Specific Growth Rate Estimation in Bioreactors Using Second-Order Sliding Observers*. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 251-256.                                   | 0.4 | 0         |

JesÃ⁰s PicÃ<sup>3</sup>

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Validation of a constraint-based model of Pichia pastoris metabolism under data scarcity. BMC<br>Systems Biology, 2010, 4, 115.                                                                                    | 3.0 | 21        |
| 56 | Data understanding with PCA: Structural and Variance Information plots. Chemometrics and Intelligent Laboratory Systems, 2010, 100, 48-56.                                                                         | 3.5 | 74        |
| 57 | Which Metabolic Pathways Generate and Characterize the Flux Space? A Comparison among<br>Elementary Modes, Extreme Pathways and Minimal Generators. Journal of Biomedicine and<br>Biotechnology, 2010, 2010, 1-13. | 3.0 | 52        |
| 58 | Applications of possibilistic reasoning to intelligent system monitoring: a case study. , 2009, , .                                                                                                                |     | 0         |
| 59 | A possibilistic framework for constraint-based metabolic flux analysis. BMC Systems Biology, 2009, 3, 79.                                                                                                          | 3.0 | 11        |
| 60 | The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter?. Analytica Chimica Acta, 2009, 642, 59-68.                                                     | 5.4 | 65        |
| 61 | Smooth sliding-mode observers for specific growth rate and substrate from biomass measurement.<br>Journal of Process Control, 2009, 19, 1314-1323.                                                                 | 3.3 | 30        |
| 62 | Geometric invariance and reference conditioning ideas for control of overflow metabolism. Journal of Process Control, 2009, 19, 1617-1626.                                                                         | 3.3 | 10        |
| 63 | Subspace identification of Bilinear and LPV systems for open- and closed-loop data. Automatica, 2009, 45, 372-381.                                                                                                 | 5.0 | 206       |
| 64 | Bilinear modelling of batch processes. Part I: theoretical discussion. Journal of Chemometrics, 2008, 22, 299-308.                                                                                                 | 1.3 | 59        |
| 65 | Multiâ€phase analysis framework for handling batch process data. Journal of Chemometrics, 2008, 22,<br>632-643.                                                                                                    | 1.3 | 72        |
| 66 | Bilinear modelling of batch processes. Part II: a comparison of PLS softâ€sensors. Journal of<br>Chemometrics, 2008, 22, 533-547.                                                                                  | 1.3 | 32        |
| 67 | On "Feedback Stabilization of Fed-Batch Bioreactors: Non-Monotonic Growth Kinetics―<br>Biotechnology Progress, 2008, 21, 651-652.                                                                                  | 2.6 | 2         |
| 68 | Stoichiometric modelling of cell metabolism. Journal of Bioscience and Bioengineering, 2008, 105, 1-11.                                                                                                            | 2.2 | 150       |
| 69 | Control of overflow metabolism via sliding mode reference conditioning. IFAC Postprint Volumes<br>IPPV / International Federation of Automatic Control, 2008, 41, 12613-12618.                                     | 0.4 | 1         |
| 70 | A NONLINEAR OBSERVER FOR BIOPROCESSES USING LMI. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 393-398.                                                                   | 0.4 | 1         |
| 71 | ADAPTIVE SLIDING MODE CONTROL OF FED-BATCH PROCESSES USING SPECIFIC GROWTH RATE ESTIMATION FEEDBACK. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 127-132.               | 0.4 | 2         |
| 72 | Robust posibilistic control for nonlinear flat systems. Journal of Biotechnology, 2007, 131, S105.                                                                                                                 | 3.8 | 0         |

JesÃ⁰s PicÃ<sup>3</sup>

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Self-tuning run to run optimization of fed-batch processes using unfold-PLS. AICHE Journal, 2007, 53, 1789-1804.                                                                          | 3.6 | 26        |
| 74 | An interval approach for dealing with flux distributions and elementary modes activity patterns.<br>Journal of Theoretical Biology, 2007, 246, 290-308.                                   | 1.7 | 55        |
| 75 | A procedure for the estimation over time of metabolic fluxes in scenarios where measurements are uncertain and/or insufficient. BMC Bioinformatics, 2007, 8, 421.                         | 2.6 | 48        |
| 76 | Controller Design Under Fuzzy Pole-Placement Specifications: An Interval Arithmetic Approach. IEEE<br>Transactions on Fuzzy Systems, 2006, 14, 822-836.                                   | 9.8 | 22        |
| 77 | Multi-phase principal component analysis for batch processes modelling. Chemometrics and<br>Intelligent Laboratory Systems, 2006, 81, 127-136.                                            | 3.5 | 88        |
| 78 | Globally stabilizing control of fed-batch processes with Haldane kinetics using growth rate estimation feedback. Journal of Process Control, 2006, 16, 865-875.                           | 3.3 | 23        |
| 79 | Online monitoring of batch processes using multi-phase principal component analysis. Journal of<br>Process Control, 2006, 16, 1021-1035.                                                  | 3.3 | 89        |
| 80 | POSSIBILISTIC ROBUST CONTROL FOR FUZZY PLANTS: CONTROLLING PERFORMANCE DEGRADATION. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 257-262.       | 0.4 | 2         |
| 81 | Comprehensive Pharmacokinetic Model of Insulin Glargine and Other Insulin Formulations. IEEE<br>Transactions on Biomedical Engineering, 2005, 52, 1994-2005.                              | 4.2 | 61        |
| 82 | Sliding mode scheme for adaptive specific growth rate control in biotechnological fed-batch processes. International Journal of Control, 2005, 78, 128-141.                               | 1.9 | 32        |
| 83 | Intelligent robotic cell for Trencad/spl inodot//spl acute/s mosaics manufacturing. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2005, 35, 75-86. | 2.9 | 0         |
| 84 | Guaranteed tuning of PID controllers for parametric uncertain systems. , 2004, , .                                                                                                        |     | 13        |
| 85 | Application of Functional Intervals to the Response Evaluation of Linear Time-Invariant Systems with Fuzzy Input. Reliable Computing, 2004, 10, 369-387.                                  | 0.8 | 4         |
| 86 | A New Sensor for Absorbance Measurement. IFAC Postprint Volumes IPPV / International Federation of<br>Automatic Control, 2004, 37, 403-408.                                               | 0.4 | 3         |
| 87 | Robust Adaptive Specific Growth Rate Control in Biotechnological Fed-Batch Processes. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2004, 37, 499-504.     | 0.4 | 1         |
| 88 | Analysis of linear systems with fuzzy parametric uncertainty. Fuzzy Sets and Systems, 2003, 135, 81-121.                                                                                  | 2.7 | 42        |
| 89 | A geometric approach to robust performance of parametric uncertain systems. International Journal of Robust and Nonlinear Control, 2003, 13, 1271-1283.                                   | 3.7 | 8         |
| 90 | Application of nonlinear time-scaling for robust controller design of reaction systems. International<br>Journal of Robust and Nonlinear Control, 2002, 12, 57-69.                        | 3.7 | 31        |

Jesús PicÃ<sup>3</sup>

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | On a Coefficientwise Stability Margin Analysis for Perturbed Polynomials. IFAC Postprint Volumes IPPV<br>/ International Federation of Automatic Control, 2000, 33, 113-118.                                 | 0.4 | 0         |
| 92  | Analysis of systems with variable parametric uncertainty using fuzzy functions. , 1999, , .                                                                                                                  |     | 13        |
| 93  | Some issues on Al techniques in RT process control. Annual Reviews in Control, 1999, 23, 125-137.                                                                                                            | 7.9 | 3         |
| 94  | Some issues on Al techniques in RT process control. Annual Reviews in Control, 1999, 23, 125-137.                                                                                                            | 7.9 | 1         |
| 95  | Localized BF-Type Networks for Identification and Adaptive Control of Discrete-Time Nonlinear<br>Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1997, 30,<br>597-602. | 0.4 | 1         |
| 96  | Analysis of rulebase coherence in fuzzy control systems. Annual Review in Automatic Programming,<br>1994, 19, 79-84.                                                                                         | 0.2 | 0         |
| 97  | A SOFTWARE PACKAGE FOR INTEGRAL SLURRY MILLING CONTROL IN CEMENT PRODUCTION PLANTS. , 1992, , 239-244.                                                                                                       |     | 1         |
| 98  | Iterative controller design by frequency scale experimental decomposition. , 0, , .                                                                                                                          |     | 4         |
| 99  | Application of functional intervals to the stability analysis of fuzzy linear systems. , 0, , .                                                                                                              |     | 3         |
| 100 | Application of local consistency techniques to the design of controllers with robust performance. ,<br>0, , .                                                                                                |     | 0         |
| 101 | Guaranteed output prediction under uncertainty of glucose endogenous metabolism for diabetic type<br>I patients. , 0, , .                                                                                    |     | 0         |
| 102 | Reduction of population variability in protein expression: A control engineering approach. , 0, , .                                                                                                          |     | 0         |