
P William Hughes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9164589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Between semelparity and iteroparity: Empirical evidence for a continuum of modes of parity. Ecology and Evolution, 2017, 7, 8232-8261.	1.9	85
2	The Genomic Architecture and Evolutionary Fates of Supergenes. Genome Biology and Evolution, 2021, 13, .	2.5	63
3	Seed traits are pleiotropically regulated by the flowering time gene <i>PERPETUAL FLOWERING 1</i> (<i>PEP1</i>) in the perennial <i>Arabis alpina</i> . Molecular Ecology, 2019, 28, 1183-1201.	3.9	22
4	The continuum between semelparity and iteroparity: plastic expression of parity in response to season length manipulation in Lobelia inflata. BMC Evolutionary Biology, 2014, 14, 90.	3.2	20
5	Inquiry-based training improves teaching effectiveness of biology teaching assistants. PLoS ONE, 2013, 8, e78540.	2.5	19
6	Minimal-Risk Seed Heteromorphism: Proportions of Seed Morphs for Optimal Risk-Averse Heteromorphic Strategies. Frontiers in Plant Science, 2018, 9, 1412.	3.6	16
7	Microsatellite evidence for obligate autogamy, but abundant genetic variation in the herbaceous monocarp <i>Lobelia inflata</i> (Campanulaceae). Journal of Evolutionary Biology, 2015, 28, 2068-2077.	1.7	14
8	Secondary reproduction in the herbaceous monocarp Lobelia inflata: time-constrained primary reproduction does not result in increased deferral of reproductive effort. BMC Ecology, 2014, 14, 15.	3.0	10
9	Development of Polymorphic Microsatellite Markers for Indian Tobacco,Lobelia inflata(Campanulaceae). Applications in Plant Sciences, 2014, 2, 1300096.	2.1	9
10	Changing reproductive effort within a semelparous reproductive episode. American Journal of Botany, 2014, 101, 1323-1331.	1.7	9
11	Nobels: Fundamental biology misses out. Nature, 2011, 479, 178-178.	27.8	4
12	Making science accessible. Science, 2020, 367, 34-35.	12.6	3
13	OsCSK2 Integrates Jasmonic Acid and Brassinosteroid Signaling in Rice. Plant Cell, 2020, 32, 2669-2670.	6.6	3
14	Round Effects: <i>Tasg-D1</i> Is Responsible for Grain Shape in Indian Dwarf Wheat. Plant Cell, 2020, 32, 789-790.	6.6	3
15	It's a TRAPP! Arabidopsis Transport Protein Particle (TRAPP) Complexes Contain a Novel Plant-Specific Subunit. Plant Cell, 2020, 32, 2081-2082.	6.6	2
16	Hot stress: basal thermotolerance in Arabidopsis depends on two ethylene response factors, ERF95 and ERF97. Plant Cell, 2021, 33, 175-176.	6.6	2
17	Fine Tuning Floral Morphology: MADS-Box Protein Complex Formation in Maize. Plant Cell, 2020, 32, 3376-3377.	6.6	1
18	Double Crossed: CDKG1 Regulates Crossover Formation by Stabilizing Meiotic and Somatic Recombination Intermediates. Plant Cell, 2020, 32, 814-815.	6.6	0

#	Article	IF	CITATIONS
19	Follow That Protein: SNAP-Tagging Permits High-Resolution Protein Localization. Plant Cell, 2020, 32, 3039-3040.	6.6	Ο
20	Exosome-Deficient Mutants Reveal Rare Promoter Upstream Transcripts (PROMPTs) in Arabidopsis. Plant Cell, 2020, 32, 1775-1776.	6.6	0