
## Bruno Silva-Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9164436/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition).<br>European Journal of Immunology, 2019, 49, 1457-1973.                                                                                                                    | 2.9  | 766       |
| 2  | CD27 is a thymic determinant of the balance between interferon-γ- and interleukin 17–producing γî´T cell<br>subsets. Nature Immunology, 2009, 10, 427-436.                                                                                                                      | 14.5 | 548       |
| 3  | γδT cells in cancer. Nature Reviews Immunology, 2015, 15, 683-691.                                                                                                                                                                                                              | 22.7 | 464       |
| 4  | Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.                                                                                                                                                                                         | 1.8  | 395       |
| 5  | Translating gammadelta (γÎ) T cells and their receptors into cancer cell therapies. Nature Reviews Drug<br>Discovery, 2020, 19, 169-184.                                                                                                                                        | 46.4 | 265       |
| 6  | γδT cells: pleiotropic immune effectors with therapeutic potential in cancer. Nature Reviews Cancer,<br>2019, 19, 392-404.                                                                                                                                                      | 28.4 | 255       |
| 7  | IL-17+ γδT cells as kick-starters of inflammation. Nature Immunology, 2017, 18, 604-611.                                                                                                                                                                                        | 14.5 | 231       |
| 8  | γδT cells in tissue physiology and surveillance. Nature Reviews Immunology, 2021, 21, 221-232.                                                                                                                                                                                  | 22.7 | 230       |
| 9  | Meningeal γδT cell–derived IL-17 controls synaptic plasticity and short-term memory. Science<br>Immunology, 2019, 4, .                                                                                                                                                          | 11.9 | 184       |
| 10 | Murine CD27 <sup>(â^')</sup> Vγ6 <sup>(+)</sup> γδT cells producing IL-17A promote ovarian cancer<br>growth via mobilization of protumor small peritoneal macrophages. Proceedings of the National<br>Academy of Sciences of the United States of America, 2014, 111, E3562-70. | 7.1  | 176       |
| 11 | Differentiation of human peripheral blood Vδ1+ T cells expressing the natural cytotoxicity receptor<br>NKp30 for recognition of lymphoid leukemia cells. Blood, 2011, 118, 992-1001.                                                                                            | 1.4  | 171       |
| 12 | Functional development of γδ <scp>T</scp> cells. European Journal of Immunology, 2013, 43, 1988-1994.                                                                                                                                                                           | 2.9  | 170       |
| 13 | Delta One T Cells for Immunotherapy of Chronic Lymphocytic Leukemia: Clinical-Grade<br>Expansion/Differentiation and Preclinical Proof of Concept. Clinical Cancer Research, 2016, 22,<br>5795-5804.                                                                            | 7.0  | 153       |
| 14 | Natural Cytotoxicity Receptors: Broader Expression Patterns and Functions in Innate and Adaptive<br>Immune Cells. Frontiers in Immunology, 2013, 4, 69.                                                                                                                         | 4.8  | 141       |
| 15 | Lymphotoxin-Mediated Regulation of ÂÂ Cell Differentiation by ÂÂ T Cell Progenitors. Science, 2005, 307,<br>925-928.                                                                                                                                                            | 12.6 | 140       |
| 16 | Protective Role of the Inflammatory CCR2/CCL2 Chemokine Pathway through Recruitment of Type 1<br>Cytotoxic Î <sup>3</sup> δT Lymphocytes to Tumor Beds. Journal of Immunology, 2013, 190, 6673-6680.                                                                            | 0.8  | 140       |
| 17 | ldentification of Regulatory Foxp3+ Invariant NKT Cells Induced by TGF-β. Journal of Immunology, 2010, 185, 2157-2163.                                                                                                                                                          | 0.8  | 134       |
| 18 | The split nature of tumor-infiltrating leukocytes. Oncolmmunology, 2012, 1, 717-725.                                                                                                                                                                                            | 4.6  | 131       |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Targeting Î <sup>3</sup> δT Lymphocytes for Cancer Immunotherapy: From Novel Mechanistic Insight to Clinical<br>Application. Cancer Research, 2010, 70, 10024-10027.                                   | 0.9  | 128       |
| 20 | Thymic Determinants of $\hat{1}^{3}\hat{1}'$ T Cell Differentiation. Trends in Immunology, 2017, 38, 336-344.                                                                                          | 6.8  | 123       |
| 21 | Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell<br>development via the CD27–CD70 pathway. Journal of Experimental Medicine, 2013, 210, 715-728.              | 8.5  | 122       |
| 22 | The inter-relatedness and interdependence of mouse T cell receptor γδ+ and αβ+ cells. Nature Immunology, 2003, 4, 991-998.                                                                             | 14.5 | 119       |
| 23 | The MHC class Ib protein ULBP1 is a nonredundant determinant of leukemia/lymphoma susceptibility to γδ<br>T-cell cytotoxicity. Blood, 2010, 115, 2407-2411.                                            | 1.4  | 117       |
| 24 | TCR signal strength controls thymic differentiation of discrete proinflammatory γδT cell subsets.<br>Nature Immunology, 2016, 17, 721-727.                                                             | 14.5 | 114       |
| 25 | Five Layers of Receptor Signaling in γδT-Cell Differentiation and Activation. Frontiers in Immunology,<br>2015, 6, 15.                                                                                 | 4.8  | 99        |
| 26 | Distinct metabolic programs established in the thymus control effector functions of γδT cell subsets<br>in tumor microenvironments. Nature Immunology, 2021, 22, 179-192.                              | 14.5 | 99        |
| 27 | Cutting Edge: Adaptive Versus Innate Receptor Signals Selectively Control the Pool Sizes of Murine<br>IFN-γ– or IL-17–Producing γδT Cells upon Infection. Journal of Immunology, 2010, 185, 6421-6425. | 0.8  | 98        |
| 28 | Epigenetic and transcriptional signatures of stable versus plastic differentiation of proinflammatory γδ<br>T cell subsets. Nature Immunology, 2013, 14, 1093-1100.                                    | 14.5 | 97        |
| 29 | Strong TCRγδSignaling Prohibits Thymic Development of IL-17A-Secreting γδT Cells. Cell Reports, 2017, 19,<br>2469-2476.                                                                                | 6.4  | 96        |
| 30 | Human Î <sup>3</sup> δ Thymocytes Are Functionally Immature and Differentiate into Cytotoxic Type 1 Effector T Cells<br>upon IL-2/IL-15 Signaling. Journal of Immunology, 2014, 192, 2237-2243.        | 0.8  | 93        |
| 31 | Innately versatile: Î <sup>3</sup> δ17ÂT cells in inflammatory and autoimmune diseases. Journal of Autoimmunity, 2018,<br>87, 26-37.                                                                   | 6.5  | 93        |
| 32 | Engagement of NKp30 on Vδ1 T cells induces the production of CCL3, CCL4, and CCL5 and suppresses HIV-1 replication. Blood, 2012, 119, 4013-4016.                                                       | 1.4  | 92        |
| 33 | IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer's disease. Cell<br>Reports, 2021, 36, 109574.                                                                 | 6.4  | 88        |
| 34 | Early events in the thymus affect the balance of effector and regulatory T cells. Nature, 2006, 444, 1073-1077.                                                                                        | 27.8 | 87        |
| 35 | Tumor-associated neutrophils suppress pro-tumoral IL-17+ γδT cells through induction of oxidative<br>stress. PLoS Biology, 2018, 16, e2004990.                                                         | 5.6  | 86        |
| 36 | Tumor cell recognition by $\hat{I}^{3}\hat{I}$ T lymphocytes. Oncolmmunology, 2013, 2, e22892.                                                                                                         | 4.6  | 83        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | CD70–CD27 interactions provide survival and proliferative signals that regulate T cell receptorâ€driven<br>activation of human γÎ′ peripheral blood lymphocytes. European Journal of Immunology, 2011, 41, 195-201. | 2.9  | 82        |
| 38 | Single-Cell Transcriptomics Identifies the Adaptation of Scart1+ Vγ6+ T Cells to Skin Residency as Activated Effector Cells. Cell Reports, 2019, 27, 3657-3671.e4.                                                  | 6.4  | 79        |
| 39 | NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. JCI Insight, 2019, 4, .                                                    | 5.0  | 77        |
| 40 | B7–CD28 Costimulatory Signals Control the Survival and Proliferation of Murine and Human γδT Cells<br>via IL-2 Production. Journal of Immunology, 2012, 189, 1202-1208.                                             | 0.8  | 72        |
| 41 | The Emerging Protumor Role of γδT Lymphocytes: Implications for Cancer Immunotherapy. Cancer Research, 2015, 75, 798-802.                                                                                           | 0.9  | 71        |
| 42 | Intraâ€ŧumour heterogeneity – going beyond genetics. FEBS Journal, 2016, 283, 2245-2258.                                                                                                                            | 4.7  | 70        |
| 43 | Molecular Determinants of Target Cell Recognition by Human Î <sup>3</sup> δT Cells. Frontiers in Immunology, 2018,<br>9, 929.                                                                                       | 4.8  | 68        |
| 44 | Broad Cytotoxic Targeting of Acute Myeloid Leukemia by Polyclonal Delta One T Cells. Cancer<br>Immunology Research, 2019, 7, 552-558.                                                                               | 3.4  | 67        |
| 45 | Effector Î <sup>3</sup> δT Cell Differentiation Relies on Master but Not Auxiliary Th Cell Transcription Factors.<br>Journal of Immunology, 2016, 196, 3642-3652.                                                   | 0.8  | 65        |
| 46 | γδT cell development — having the strength to get there. Current Opinion in Immunology, 2005, 17,<br>108-115.                                                                                                       | 5.5  | 64        |
| 47 | Identification of a panel of ten cell surface protein antigens associated with immunotargeting of<br>leukemias and lymphomas by peripheral blood ÂÂ T cells. Haematologica, 2010, 95, 1397-1404.                    | 3.5  | 63        |
| 48 | Searching for"signal 2â€: costimulation requirements of γδT cells. Cellular and Molecular Life Sciences,<br>2011, 68, 2345-2355.                                                                                    | 5.4  | 61        |
| 49 | <scp>IL</scp> â€23 drives differentiation of peripheral γδ17 T cells from adult bone marrowâ€derived precursors. EMBO Reports, 2017, 18, 1957-1967.                                                                 | 4.5  | 61        |
| 50 | Primary Tumors Limit Metastasis Formation through Induction of IL15-Mediated Cross-Talk between<br>Patrolling Monocytes and NK Cells. Cancer Immunology Research, 2017, 5, 812-820.                                 | 3.4  | 57        |
| 51 | Highly Active Microbial Phosphoantigen Induces Rapid yet Sustained MEK/Erk- and Pl-3K/Akt-Mediated<br>Signal Transduction in Anti-Tumor Human γî´T-Cells. PLoS ONE, 2009, 4, e5657.                                 | 2.5  | 47        |
| 52 | Pre-TCR signaling regulates IL-7 receptor α expression promoting thymocyte survival at the transition from the double-negative to double-positive stage. European Journal of Immunology, 2003, 33, 1968-1977.       | 2.9  | 46        |
| 53 | Non lassical major histocompatibility complex proteins as determinants of tumour<br>immunosurveillance. EMBO Reports, 2007, 8, 1024-1030.                                                                           | 4.5  | 44        |
| 54 | Crosstalk between $\hat{I}^{3}\hat{I}^{\prime}$ T cells and the microbiota. Nature Microbiology, 2021, 6, 1110-1117.                                                                                                | 13.3 | 44        |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | At the Bench: Preclinical rationale for exploiting NK cells and γÎ′ T lymphocytes for the treatment of high-risk leukemias. Journal of Leukocyte Biology, 2013, 94, 1123-1139.                                  | 3.3  | 43        |
| 56 | From thymus to periphery: Molecular basis of effector γδâ€ī cell differentiation. Immunological Reviews,<br>2020, 298, 47-60.                                                                                   | 6.0  | 42        |
| 57 | Working in "NK Mode†Natural Killer Group 2 Member D and Natural Cytotoxicity Receptors in<br>Stress-Surveillance by γδT Cells. Frontiers in Immunology, 2018, 9, 851.                                           | 4.8  | 41        |
| 58 | Promoting angiogenesis within the tumor microenvironment: The secret life of murine lymphoid<br>ILâ€17â€producing γδT cells. European Journal of Immunology, 2010, 40, 1873-1876.                               | 2.9  | 40        |
| 59 | Molecular Mechanisms of Differentiation of Murine Pro-Inflammatory Î <sup>3</sup> δT Cell Subsets. Frontiers in<br>Immunology, 2013, 4, 431.                                                                    | 4.8  | 36        |
| 60 | Crossâ€regulation between cytokine and microRNA pathways in TÂcells. European Journal of<br>Immunology, 2015, 45, 1584-1595.                                                                                    | 2.9  | 36        |
| 61 | Epigenetic and transcriptional regulation of $\hat{1}^{3}\hat{1}^{T}$ cell differentiation: Programming cells for responses in time and space. Seminars in Immunology, 2015, 27, 19-25.                         | 5.6  | 34        |
| 62 | γÎ′-T cells promote IFN-γ–dependent <i>Plasmodium</i> pathogenesis upon liver-stage infection.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9979-9988.        | 7.1  | 34        |
| 63 | A population of proinflammatory T cells coexpresses αβ and γδT cell receptors in mice and humans.<br>Journal of Experimental Medicine, 2020, 217, .                                                             | 8.5  | 33        |
| 64 | VEGFR2–Mediated Reprogramming of Mitochondrial Metabolism Regulates the Sensitivity of Acute<br>Myeloid Leukemia to Chemotherapy. Cancer Research, 2018, 78, 731-741.                                           | 0.9  | 32        |
| 65 | Inhibition of murine γδlymphocyte expansion and effector function by regulatory αβ T cells is<br>cellâ€contactâ€dependent and sensitive to GITR modulation. European Journal of Immunology, 2010, 40,<br>61-70. | 2.9  | 30        |
| 66 | PreTCR and TCRγδ Signal Initiation in Thymocyte Progenitors Does Not Require Domains Implicated in<br>Receptor Oligomerization. Science Signaling, 2011, 4, ra47.                                               | 3.6  | 27        |
| 67 | Low-Density Lipoprotein Uptake Inhibits the Activation and Antitumor Functions of Human Vγ9Vδ2 T<br>Cells. Cancer Immunology Research, 2018, 6, 448-457.                                                        | 3.4  | 25        |
| 68 | The Emerging Complexity of $\hat{I}^{3}\hat{I}$ T17 Cells. Frontiers in Immunology, 2018, 9, 796.                                                                                                               | 4.8  | 25        |
| 69 | High-throughput analysis of the human thymic Vδ1+ T cell receptor repertoire. Scientific Data, 2019, 6,<br>115.                                                                                                 | 5.3  | 25        |
| 70 | Low-dose ionizing radiation induces therapeutic neovascularization in a pre-clinical model of hindlimb ischemia. Cardiovascular Research, 2017, 113, 783-794.                                                   | 3.8  | 24        |
| 71 | MicroRNA-146a controls functional plasticity in $\hat{I}^{3}\hat{I}^{-}T$ cells by targeting NOD1. Science Immunology, 2018, 3, .                                                                               | 11.9 | 24        |
| 72 | Lineage tracing of acute myeloid leukemia reveals the impact of hypomethylating agents on chemoresistance selection. Nature Communications, 2019, 10, 4986.                                                     | 12.8 | 24        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Differentiation and Activation of γδT Lymphocytes: Focus on CD27 and CD28 Costimulatory Receptors.<br>Advances in Experimental Medicine and Biology, 2013, 785, 95-105.                                                           | 1.6  | 23        |
| 74 | γδT ell conference 2012: Close encounters for the fifth time. European Journal of Immunology, 2012, 42,<br>3101-3105.                                                                                                             | 2.9  | 21        |
| 75 | Toward a better understanding of TÂcells in cancer. Cancer Cell, 2021, 39, 1549-1552.                                                                                                                                             | 16.8 | 21        |
| 76 | γδ cells making IL-17. Blood, 2011, 118, 3-5.                                                                                                                                                                                     | 1.4  | 17        |
| 77 | Control of T cell effector functions by miRNAs. Cancer Letters, 2018, 427, 63-73.                                                                                                                                                 | 7.2  | 17        |
| 78 | Subset-specific alterations in frequencies and functional signatures of γδT cells in systemic sclerosis patients. Inflammation Research, 2016, 65, 985-994.                                                                       | 4.0  | 15        |
| 79 | MicroRNA-181a regulates IFN-Î <sup>3</sup> expression in effector CD8+ T cell differentiation. Journal of Molecular<br>Medicine, 2020, 98, 309-320.                                                                               | 3.9  | 15        |
| 80 | γδT cells in malaria: a doubleâ€edged sword. FEBS Journal, 2021, 288, 1118-1129.                                                                                                                                                  | 4.7  | 15        |
| 81 | Immunization with genetically attenuated P52-deficient Plasmodium berghei sporozoites induces a<br>long-lasting effector memory CD8+ T cell response in the liver. Journal of Immune Based Therapies and<br>Vaccines, 2011, 9, 6. | 2.4  | 14        |
| 82 | The blind-spot of regulatory T cells. European Journal of Immunology, 2006, 36, 802-805.                                                                                                                                          | 2.9  | 11        |
| 83 | Functional and metabolic dichotomy of murine γδT cell subsets in cancer immunity. European Journal of Immunology, 2021, 51, 17-26.                                                                                                | 2.9  | 10        |
| 84 | γδT cells get adaptive. Nature Immunology, 2017, 18, 370-372.                                                                                                                                                                     | 14.5 | 9         |
| 85 | Decrease of perforin positive CD3+γÎ-T cells in patients with obstructive sleep disordered breathing.<br>Sleep and Breathing, 2018, 22, 211-221.                                                                                  | 1.7  | 9         |
| 86 | Prevalence of SARS-CoV-2 Antibodies after First 6 Months of COVID-19 Pandemic, Portugal. Emerging<br>Infectious Diseases, 2021, 27, 2878-2881.                                                                                    | 4.3  | 9         |
| 87 | Foxp3 induction in human and murine thymus precedes the CD4 <sup>+</sup> CD8 <sup>+</sup> stage but requires early Tâ€cell receptor expression. Immunology and Cell Biology, 2010, 88, 523-528.                                   | 2.3  | 7         |
| 88 | Peripheral clonal selection shapes the human Î <sup>3</sup> δT-cell repertoire. Cellular and Molecular Immunology,<br>2017, 14, 733-735.                                                                                          | 10.5 | 6         |
| 89 | Recruitment of $\hat{I}^{3}\hat{I}$ T lymphocytes to tumors. Oncolmmunology, 2013, 2, e25461.                                                                                                                                     | 4.6  | 5         |
| 90 | MicroRNAâ€181a restricts human γδT cell differentiation by targeting Map3k2 and Notch2. EMBO Reports,<br>2022, 23, e52234.                                                                                                        | 4.5  | 5         |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | How to develop <scp>IL</scp> â€17â€producing γî′T cells. Immunology and Cell Biology, 2018, 96, 886-887.                                                                                                                              | 2.3  | 4         |
| 92  | Driving <scp>lL</scp> â€17 <sup>+</sup> γδ <scp>T</scp> â€cell migration in allergic reactions: A new<br>"inflammatory―role for the "homeostatic―chemokine <scp>CCL</scp> 25. European Journal of<br>Immunology, 2012, 42, 1097-1101. | 2.9  | 3         |
| 93  | Got my γÎ′17 T cells to keep me warm. Nature Immunology, 2018, 19, 427-429.                                                                                                                                                           | 14.5 | 3         |
| 94  | Epigenetic mechanisms in the regulation of lymphocyte differentiation. , 2020, , 77-116.                                                                                                                                              |      | 3         |
| 95  | Developmental and Functional Assays to Study Murine and Human Î <sup>3</sup> δT Cells. Methods in Molecular<br>Biology, 2017, 1514, 257-267.                                                                                          | 0.9  | 2         |
| 96  | Editorial: γÎ′ T Cells in Cancer. Frontiers in Immunology, 2020, 11, 602411.                                                                                                                                                          | 4.8  | 2         |
| 97  | New insights on murine γδT cells from single-cell multi-omics. Science Bulletin, 2022, 67, 1102-1104.                                                                                                                                 | 9.0  | 2         |
| 98  | Spotlight on Immunology under the Portuguese sun. European Journal of Immunology, 2011, 41, 1819-1821.                                                                                                                                | 2.9  | 1         |
| 99  | Role of CD3+Î <sup>3</sup> Î^T cells in the association of obstructive sleep-disordered breathing and cancer. Sleep and Breathing, 2020, 24, 1673-1674.                                                                               | 1.7  | 1         |
| 100 | Immunology's Twinning Triangle. European Journal of Immunology, 2016, 46, 2283-2285.                                                                                                                                                  | 2.9  | 0         |
| 101 | Meningeal γδT Cells Impact on Cognition in Health and Disease. Biological Psychiatry, 2021, 89, S64-S65.                                                                                                                              | 1.3  | 0         |
| 102 | Multifaceted CK2 in malignant and healthy T cells. Oncotarget, 2017, 8, 90622-90623.                                                                                                                                                  | 1.8  | 0         |