Robert J Stanley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9163724/publications.pdf

Version: 2024-02-01

361413 345221 1,384 55 20 citations h-index papers

36 g-index 58 58 58 1079 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Oscillations in the Spontaneous Fluorescence from Photosynthetic Reaction Centers. The Journal of Physical Chemistry, 1995, 99, 859-863.	2.9	156
2	Cluster ion dip spectroscopy of hydrogen bonded phenol(H2O)n clusters, n=0–4. Journal of Chemical Physics, 1991, 94, 7744-7756.	3.0	126
3	Cisâ^'SynThymidine Dimer Repair by DNA Photolyase in Real Timeâ€. Biochemistry, 2003, 42, 8558-8568.	2.5	88
4	Excited State Energy Transfer Pathways in Photosynthetic Reaction Centers. 1. Structural Symmetry Effects. The Journal of Physical Chemistry, 1996, 100, 12052-12059.	2.9	87
5	Ultrafast Excited State Dynamics of Oxidized Flavins:  Direct Observations of Quenching by Purines. Journal of Physical Chemistry A, 2000, 104, 6899-6906.	2.5	64
6	Cyclobutylpyrimidine Dimer Base Flipping by DNA Photolyase. Journal of Biological Chemistry, 2002, 277, 38339-38344.	3.4	62
7	Femtosecond multiphoton ionization of ammonia clusters. Journal of Chemical Physics, 1992, 97, 9480-9482.	3.0	58
8	Evidence of Powerful Substrate Electric Fields in DNA Photolyase:  Implications for Thymidine Dimer Repair. Biochemistry, 2001, 40, 15203-15214.	2.5	42
9	Charge Redistribution in Oxidized and Semiquinone E. coli DNA Photolyase upon Photoexcitation: Stark Spectroscopy Reveals a Rationale for the Position of Trp382. Journal of the American Chemical Society, 2009, 131, 4795-4807.	13.7	42
10	Electronic Structure Measurements of Oxidized Flavins and Flavin Complexes Using Stark-Effect Spectroscopy. Journal of Physical Chemistry A, 1999, 103, 8976-8984.	2.5	35
11	lon dip spectroscopy of phenol–OD and phenol–OD(D2O)1. Journal of Chemical Physics, 1993, 98, 796-799.	3.0	34
12	Effects of applied electric fields on the quantum yields of the initial electron-transfer steps in bacterial photosynthesis. 1. Quantum yield failure. The Journal of Physical Chemistry, 1993, 97, 13165-13171.	2.9	32
13	Two-Photon Excitation of 4'-Hydroxymethyl-4,5',8-Trimethylpsoralen. Photochemistry and Photobiology, 1997, 65, 91-95.	2.5	32
14	The Two-Photon Excitation Cross Section of 6MAP, a Fluorescent Adenine Analogue. Journal of Physical Chemistry B, 2005, 109, 3690-3695.	2.6	28
15	Effects of applied electric fields on the quantum yields for the initial electron transfer steps in bacterial photosynthesis II. Dynamic Stark effect. Chemical Physics, 1995, 197, 259-275.	1.9	26
16	A Stark Spectroscopic Study of N(3)-Methyl, N(10)-Isobutyl-7,8-Dimethylisoalloxazine in Nonpolar Low-Temperature Glasses:  Experiment and Comparison with Calculations. Journal of Physical Chemistry A, 2001, 105, 11001-11008.	2.5	26
17	Change in Electronic Structure upon Optical Excitation of 8-Vinyladenosine: An Experimental and Theoretical Study. Journal of Physical Chemistry A, 2010, 114, 256-267.	2.5	24
18	Coexistence of Different Electronâ€Transfer Mechanisms in the DNA Repair Process by Photolyase. Chemistry - A European Journal, 2016, 22, 11371-11381.	3.3	23

#	Article	IF	CITATIONS
19	6MAP, a Fluorescent Adenine Analogue, Is a Probe of Base Flipping by DNA Photolyase. Journal of Physical Chemistry B, 2007, 111, 10615-10625.	2.6	22
20	Advances in Flavin and Flavoprotein Optical Spectroscopy. Antioxidants and Redox Signaling, 2001, 3, 847-866.	5.4	20
21	The Extent of DNA Deformation in DNA Photolyase– Substrate Complexes: A Solution State Fluorescence Study. Photochemistry and Photobiology, 2008, 84, 741-749.	2.5	20
22	Differential Fluorescence Quenching of Fluorescent Nucleic Acid Base Analogues by Native Nucleic Acid Monophosphates. Journal of Physical Chemistry B, 2010, 114, 5953-5963.	2.6	20
23	Flavin as a photo-active acceptor for efficient energy and charge transfer in a model donor–acceptor system. Physical Chemistry Chemical Physics, 2012, 14, 6749.	2.8	20
24	Measurement of the Electronic Properties of the Flavoprotein Old Yellow Enzyme (OYE) and the OYE:p-Cl Phenol Charge-Transfer Complex Using Stark Spectroscopyâ€. Biochemistry, 2003, 42, 991-999.	2.5	19
25	Determinants of Photolyase's DNA Repair Mechanism in Mesophiles and Extremophiles. Journal of the American Chemical Society, 2018, 140, 2853-2861.	13.7	19
26	Resonance-enhanced multiphoton ionization (2+1) of the \$\$ilde B\$\$ and \$\$ilde C'\$\$ states of ammonia. Applied Physics B: Lasers and Optics, 1983, 32, 35-38.	2.2	18
27	Differential Distortion of Substrate Occurs When It Binds to DNA Photolyase:Â A 2-Aminopurine Studyâ€. Biochemistry, 2006, 45, 11239-11245.	2.5	18
28	Electronic Transition Dipole Moment Directions of Reduced Anionic Flavin in Stretched Poly(vinyl) Tj ETQq0 0 0	rgBT /Over	lock 10 Tf 50
29	Photoinduced Electron Transfer Occurs between 2-Aminopurine and the DNA Nucleic Acid Monophosphates: Results from Cyclic Voltammetry and Fluorescence Quenching. Journal of Physical Chemistry B, 2010, 114, 10573-10580.	2.6	18
30	2-Aminopurine Excited State Electronic Structure Measured by Stark Spectroscopy. Journal of Physical Chemistry B, 2008, 112, 1789-1795.	2.6	16
31	Ion dip spectroscopy of van der Waals clusters. Journal of Chemical Physics, 1990, 92, 5770-5775.	3.0	15
32	Excited State Charge Redistribution and Dynamics in the Donor-Ï€-Acceptor Flavin Derivative ABFL. Journal of Physical Chemistry B, 2013, 117, 15684-15694.	2.6	15
33	Excited State Energy Transfer Pathways in Photosynthetic Reaction Centers. 2. Heterodimer Special Pair. Journal of Physical Chemistry B, 1997, 101, 3644-3648.	2.6	13
34	Hydrophobic Distal Pocket Affects NOâ^'Heme Geminate Recombination Dynamics in Dehaloperoxidase and H64V Myoglobin. Journal of Physical Chemistry B, 2006, 110, 14483-14493.	2.6	13
35	Dipole Moment and Polarizability of Tunable Intramolecular Charge Transfer States in Heterocyclic π-Conjugated Molecular Dyads Determined by Computational and Stark Spectroscopic Study. Journal of Physical Chemistry C, 2018, 122, 9346-9355.	3.1	13
36	Overlapping Electronic States with Nearly Parallel Transition Dipole Moments in Reduced Anionic Flavin Can Distort Photobiological Dynamics. Journal of the American Chemical Society, 2016, 138, 14880-14889.	13.7	12

#	Article	IF	Citations
37	Excited-State Electronic Properties of 6-Methylisoxanthopterin (6-MI): An Experimental and Theoretical Study. Journal of Physical Chemistry B, 2012, 116, 2981-2989.	2.6	11
38	Oxidation and reduction potentials of 8-vinyladenosine measured by cyclic voltammetry: Implications for photoinduced electron transfer quenching of a fluorescent adenine analog. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 249, 9-14.	3.9	9
39	Ultrafast flavin/tryptophan radical pair kinetics in a magnetically sensitive artificial protein. Physical Chemistry Chemical Physics, 2019, 21, 13453-13461.	2.8	9
40	A theoretical explanation for quantum yield failure in bacterial photosynthetic reaction centers. Chemical Physics, 2002, 276, 115-127.	1.9	8
41	An Ethenoadenine FAD Analog Accelerates UV Dimer Repair by DNA Photolyase. Photochemistry and Photobiology, 2017, 93, 343-354.	2.5	7
42	A "How-To―Guide to the Stark Spectroscopy of Flavins and Flavoproteins. Methods in Molecular Biology, 2014, 1146, 443-466.	0.9	7
43	Excited State Electronic Structures of 5,10-Methenyltetrahydrofolate and 5,10-Methylenetetrahydrofolate Determined by Stark Spectroscopy. Journal of Physical Chemistry A, 2014, 118, 8320-8328.	2.5	6
44	The Missing Electrostatic Interactions Between DNA Substrate and Sulfolobus solfataricus DNA Photolyase: What is the Role of Charged Amino Acids in Thermophilic DNA Binding Proteins?. Journal of Physical Chemistry B, 2016, 120, 10234-10242.	2.6	6
45	Characterization of a cold-adapted DNA photolyase from C. psychrerythraea 34H. Extremophiles, 2017, 21, 919-932.	2.3	6
46	Optically Controlled Electron Transfer in a Re ^I Complex. Chemistry - A European Journal, 2021, 27, 5399-5403.	3.3	6
47	A cryogenic optical waveguide spectrometer for the measurement of low-temperature absorption spectra of dilute biological samples. Analytical Biochemistry, 2005, 337, 121-129.	2.4	4
48	Measuring electronic structure properties of flavins and flavoproteins by electronic Stark spectroscopy. Methods in Enzymology, 2019, 620, 215-250.	1.0	4
49	Stark Spectroscopy of Lumichrome: A Possible Candidate for Stand-Off Detection of Bacterial Quorum Sensing. Journal of Physical Chemistry B, 2020, 124, 11835-11842.	2.6	4
50	Comparing ultrafast excited state quenching of flavin 1,N6-ethenoadenine dinucleotide and flavin adenine dinucleotide by optical spectroscopy and DFT calculations. Photochemical and Photobiological Sciences, 2022, 21, 959-982.	2.9	2
51	Cyclobutylthymidine Dimer Repair by DNA Photolyase in Real Time. ACS Symposium Series, 2006, , 137-144.	0.5	1
52	THz-Pump/SC-Probe Spectroscopy and the Non-resonant Dynamic Stark Effect of Molecules., 2021,,.		0
53	Intermediates in the ultrafast repair of DNA by DNA photolyase. , 2006, , 337-345.		0
54	10 Excited state electronic structure of flavins and flavoproteins from theory and experiment., 2013 ,, $225-254$.		0

#	Article	IF	CITATIONS
55	Screening for novel fluorescent nucleobase analogs (FBAs) using computational and experimental methods ―2â€aminoâ€8â€vinylpurine (2A8VP), as a Case study. FASEB Journal, 2022, 36, .	0.5	0