
Martin Rowe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9163394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of bcl-2 expression by epstein-barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell, 1991, 65, 1107-1115.	28.9	1,219
2	Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature, 2012, 490, 116-120.	27.8	759
3	Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin's disease. Lancet, The, 1991, 337, 320-322.	13.7	707
4	Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8479-8483.	7.1	601
5	Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies Journal of Experimental Medicine, 1992, 176, 157-168.	8.5	504
6	Expression of Epsteinâ€Barr virusâ€encoded proteins in nasopharyngeal carcinoma. International Journal of Cancer, 1988, 42, 329-338.	5.1	483
7	Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23 Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 3452-3456.	7.1	444
8	Different Epstein–Barr virus–B cell interactions in phenotypically distinct clones of a Burkitt's lymphoma cell line. Journal of General Virology, 1990, 71, 1481-1495.	2.9	341
9	Epstein-Barr virus (EBV)-associated lymphoproliferative disease in the SCID mouse model: implications for the pathogenesis of EBV-positive lymphomas in man Journal of Experimental Medicine, 1991, 173, 147-158.	8.5	313
10	Monoclonal Antibodies to the Latent Membrane Protein of Epstein-Barr Virus Reveal Heterogeneity of the Protein and Inducible Expression in Virus-transformed Cells. Journal of General Virology, 1987, 68, 1575-1586.	2.9	298
11	HLA-A11 epitope loss isolates of Epstein-Barr virus from a highly A11+ population. Science, 1993, 260, 98-100.	12.6	272
12	Epstein – Barr virus-encoded LMP1 and CD40 mediate IL-6 production in epithelial cells via an NF-κB pathway involving TNF receptor-associated factors. Oncogene, 1997, 14, 2899-2916.	5.9	252
13	Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3366-3371.	7.1	202
14	Restoration of endogenous antigen processing in Burkitt's lymphoma cells by Epstein-Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. European Journal of Immunology, 1995, 25, 1374-1384.	2.9	195
15	Epstein-Barr Virus-Encoded Latent Membrane Protein 1 Activates the JNK Pathway through Its Extreme C Terminus via a Mechanism Involving TRADD and TRAF2. Journal of Virology, 1999, 73, 1023-1035.	3.4	194
16	The association of an HPV16 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer. Nature Medicine, 1995, 1, 464-470.	30.7	184
17	Epstein-barr virus-infected b cells persist in the circulation of acyclovir-treated virus carriers. International Journal of Cancer, 1989, 43, 67-71.	5.1	181
18	Restricted Epstein-Barr virus protein expression in Burkitt lymphoma is due to a different Epstein-Barr nuclear antigen 1 transcriptional initiation site Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 6343-6347.	7.1	181

#	Article	IF	CITATIONS
19	Monoclonal antibodies to epstein-barr virus-induced, transformation-associated cell surface antigens: Binding patterns and effect upon virus-specific t-cell cytotoxicity. International Journal of Cancer, 1982, 29, 373-381.	5.1	156
20	Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in <i>p53</i> . Genes and Development, 2014, 28, 58-70.	5.9	156
21	Epstein–Barr virus-positive Burkitt's lymphoma cells not recognized by virus-specific T-cell surveillance. Nature, 1985, 317, 629-631.	27.8	149
22	The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation. PLoS Pathogens, 2009, 5, e1000255.	4.7	149
23	An Epstein-Barr Virus Anti-Apoptotic Protein Constitutively Expressed in Transformed Cells and Implicated in Burkitt Lymphomagenesis: The Wp/BHRF1 Link. PLoS Pathogens, 2009, 5, e1000341.	4.7	142
24	Epstein-Barr Virus Nuclear Antigen 3C Interacts with Histone Deacetylase To Repress Transcription. Journal of Virology, 1999, 73, 5688-5697.	3.4	136
25	The Switch from Latent to Productive Infection in Epstein-Barr Virus-Infected B Cells Is Associated with Sensitization to NK Cell Killing. Journal of Virology, 2007, 81, 474-482.	3.4	134
26	The H3K27me3 demethylase, KDM6B, is induced by Epstein–Barr virus and over-expressed in Hodgkin's Lymphoma. Oncogene, 2011, 30, 2037-2043.	5.9	133
27	T-cell-mediated regression of "spontaneous―and of Epstein-Barr virus-induced B-cell transformation in vitro: Studies with cyclosporin A. Cellular Immunology, 1984, 87, 646-658.	3.0	132
28	Immunohistochemical demonstration of the Epstein-Barr virus-encoded latent membrane protein in paraffin sections of Hodgkin's disease. Journal of Pathology, 1992, 166, 1-5.	4.5	131
29	Cytostatic Effect of Epstein–Barr Virus Latent Membrane Protein-1 Analyzed Using Tetracycline-Regulated Expression in B Cell Lines. Virology, 1996, 223, 29-40.	2.4	130
30	Ligation of the CD23, p45 (BLAST-2, EBVCS) antigen triggers the cell-cycle progression of activated B lymphocytes. European Journal of Immunology, 1986, 16, 1075-1080.	2.9	127
31	Distinctions between endemic and sporadic forms of epstein-barr virus-positive burkitt's lymphoma. International Journal of Cancer, 1985, 35, 435-441.	5.1	126
32	Three transcriptionally distinct forms of epstein-barr virus latency in somatic cell hybrids: Cell phenotype dependence of virus promoter usage. Virology, 1992, 187, 189-201.	2.4	120
33	Epstein-Barr virus latent membrane protein-1 (LMP1) C-terminus activation region 2 (CTAR2) maps to the far C-terminus and requires oligomerisation for NF-κB activation. Oncogene, 1997, 15, 1851-1858.	5.9	119
34	Human cytotoxic T-cell responses against Epstein-Barr virus nuclear antigens demonstrated by using recombinant vaccinia viruses Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 2906-2910.	7.1	114
35	The EpsteinBarr virus carrier state: dominance of a single growth-transforming isolate in the blood and in the oropharynx of healthy virus carriers. Journal of General Virology, 1991, 72, 1579-1590.	2.9	112
36	Expression of Epstein-Barr virus replicative proteins in aids-related non-Hodgkin's lymphoma cells. Journal of Pathology, 1991, 165, 289-299.	4.5	111

#	Article	IF	CITATIONS
37	Epstein-Barr virus evasion of CD8+ and CD4+ T cell immunity via concerted actions of multiple gene products. Seminars in Cancer Biology, 2008, 18, 397-408.	9.6	108
38	Epstein–Barr virus-specific cytotoxic T-cell clones restricted through a single HLA antigen. Nature, 1982, 297, 413-415.	27.8	106
39	Features Distinguishing Epstein-Barr Virus Infections of Epithelial Cells and B Cells: Viral Genome Expression, Genome Maintenance, and Genome Amplification. Journal of Virology, 2009, 83, 7749-7760.	3.4	104
40	Epstein-Barr virus status and tumour cell phenotype in sporadic Burkitt's lymphoma. International Journal of Cancer, 1986, 37, 367-373.	5.1	102
41	Antigen Processing Defects in Cervical Carcinomas Limit the Presentation of a CTL Epitope from Human Papillomavirus 16 E6. Journal of Immunology, 2001, 167, 5420-5428.	0.8	101
42	Evidence for an association between CD23 and the receptor for a low molecular weight B cell growth factor. European Journal of Immunology, 1986, 16, 1627-1630.	2.9	100
43	Quantitative Studies of Epstein-Barr Virus-Encoded MicroRNAs Provide Novel Insights into Their Regulation. Journal of Virology, 2011, 85, 996-1010.	3.4	99
44	Burkitt's lymphoma: The Rosetta Stone deciphering Epstein-Barr virus biology. Seminars in Cancer Biology, 2009, 19, 377-388.	9.6	94
45	Class I major histocompatibility complex-restricted cytotoxic T lymphocytes specific for Epstein-Barr virus (EBV)-transformed B lymphoblastoid cell lines against which they were raised Journal of Experimental Medicine, 1995, 181, 2221-2228.	8.5	91
46	Epstein-Barr virus LMP1 blocks p16INK4a–RB pathway by promoting nuclear export of E2F4/5. Journal of Cell Biology, 2003, 162, 173-183.	5.2	91
47	Bmi-1 is induced by the Epstein-Barr virus oncogene LMP1 and regulates the expression of viral target genes in Hodgkin lymphoma cells. Blood, 2007, 109, 2597-2603.	1.4	89
48	Epstein-Barr Virus Infection of Polarized Epithelial Cells via the Basolateral Surface by Memory B Cell-Mediated Transfer Infection. PLoS Pathogens, 2011, 7, e1001338.	4.7	89
49	The DNase of Gammaherpesviruses Impairs Recognition by Virus-Specific CD8 ⁺ T Cells through an Additional Host Shutoff Function. Journal of Virology, 2008, 82, 2385-2393.	3.4	87
50	The bfl-1 Gene Is Transcriptionally Upregulated by the Epstein-Barr Virus LMP1, and Its Expression Promotes the Survival of a Burkitt's Lymphoma Cell Line. Journal of Virology, 2000, 74, 6652-6658.	3.4	86
51	Down-regulation of BLIMP11± by the EBV oncogene, LMP-1, disrupts the plasma cell differentiation program and prevents viral replication in B cells: implications for the pathogenesis of EBV-associated B-cell lymphomas. Blood, 2011, 117, 5907-5917.	1.4	86
52	Epstein-Barr Virus Nuclear Antigen 3C and Prothymosin Alpha Interact with the p300 Transcriptional Coactivator at the CH1 and CH3/HAT Domains and Cooperate in Regulation of Transcription and Histone Acetylation. Journal of Virology, 2002, 76, 4699-4708.	3.4	83
53	Epstein-Barr Virus gp42 Is Posttranslationally Modified To Produce Soluble gp42 That Mediates HLA Class II Immune Evasion. Journal of Virology, 2005, 79, 841-852.	3.4	82
54	PATTERNS OF EPSTEIN-BARR VIRUS LATENT AND REPLICATIVE GENE EXPRESSION IN EPSTEIN-BARR VIRUS B CELL LYMPHOPROLIFERATIVE DISORDERS AFTER ORGAN TRANSPLANTATION. Transplantation, 1994, 58, 317-323.	1.0	82

#	Article	IF	CITATIONS
55	Epigenetic and Transcriptional Changes Which Follow Epstein-Barr Virus Infection of Germinal Center B Cells and Their Relevance to the Pathogenesis of Hodgkin's Lymphoma. Journal of Virology, 2011, 85, 9568-9577.	3.4	81
56	Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle. PLoS Pathogens, 2009, 5, e1000490.	4.7	80
57	The Epstein-Barr Virus-Encoded BILF1 Protein Modulates Immune Recognition of Endogenously Processed Antigen by Targeting Major Histocompatibility Complex Class I Molecules Trafficking on both the Exocytic and Endocytic Pathways. Journal of Virology, 2011, 85, 1604-1614.	3.4	74
58	Epstein-Barr virus-transformed human precursor B cell lines: altered growth phenotype of lines with germline or rearranged but nonexpressed heavy chain genes. European Journal of Immunology, 1987, 17, 1199-1207.	2.9	71
59	Downregulated Expression of SHP-1 in Burkitt Lymphomas and Germinal Center B Lymphocytes. Journal of Experimental Medicine, 1997, 186, 1575-1583.	8.5	71
60	Impaired Transporter Associated with Antigen Processing-Dependent Peptide Transport during Productive EBV Infection. Journal of Immunology, 2005, 174, 6829-6838.	0.8	70
61	Reactivation of epstein-barr virus-specific cytotoxic t cells byin vitro stimulation with the autologous lymphoblastoid cell line. International Journal of Cancer, 1981, 27, 593-601.	5.1	69
62	Viral latent membrane protein 1 (LMP-1)–induced CD99 down-regulation in B cells leads to the generation of cells with Hodgkin's and Reed-Sternberg phenotype. Blood, 2000, 95, 294-300.	1.4	69
63	The Lytic Cycle of Epstein-Barr Virus Is Associated with Decreased Expression of Cell Surface Major Histocompatibility Complex Class I and Class II Molecules. Journal of Virology, 2002, 76, 8179-8188.	3.4	69
64	Cytotoxic T cell recognition of Epstein-Barr virus-infected B cells. III. Establishment of HLA-restricted cytotoxic T cell lines using interleukin 2. European Journal of Immunology, 1982, 12, 1012-1018.	2.9	68
65	Unexpected patterns of Epstein–Barr virus transcription revealed by a High throughput PCR array for absolute quantification of viral mRNA. Virology, 2015, 474, 117-130.	2.4	68
66	The role of repetitive DNA sequences in the size variation of Epstein–Barr virus (EBV) nuclear antigens, and the identification of different EBV isolates using RFLP and PCR analysis. Journal of General Virology, 1995, 76, 779-790.	2.9	67
67	Latent Membrane Protein 1 of Epstein-Barr Virus Stimulates Processing of NF-κB2 p100 to p52. Journal of Biological Chemistry, 2003, 278, 51134-51142.	3.4	66
68	Epstein-Barr Virus LMP-1 Natural Sequence Variants Differ in Their Potential To Activate Cellular Signaling Pathways. Journal of Virology, 2001, 75, 9129-9141.	3.4	65
69	Two Carboxyl-terminal Activation Regions of Epstein-Barr Virus Latent Membrane Protein 1 Activate NF-ΰB through Distinct Signaling Pathways in Fibroblast Cell Lines. Journal of Biological Chemistry, 2003, 278, 46565-46575.	3.4	65
70	Epstein Barr virus entry; kissing and conjugation. Current Opinion in Virology, 2014, 4, 78-84.	5.4	65
71	A novel latent membrane 2 transcript expressed in Epstein-Barr virus–positive NK- and T-cell lymphoproliferative disease encodes a target for cellular immunotherapy. Blood, 2010, 116, 3695-3704.	1.4	63
72	The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II. Journal of Virology, 2016, 90, 356-367.	3.4	63

#	Article	IF	CITATIONS
73	Epstein-Barr Virus Evades CD4+ T Cell Responses in Lytic Cycle through BZLF1-mediated Downregulation of CD74 and the Cooperation of vBcl-2. PLoS Pathogens, 2011, 7, e1002455.	4.7	61
74	Epstein–Barr virus latent membrane protein-1 (LMP1) signalling is distinct from CD40 and involves physical cooperation of its two C-terminus functional regions. Oncogene, 1998, 17, 2383-2392.	5.9	59
75	Precipitation of the EpsteinBarr virus protein EBNA 2 by an EBNA 3c-specific monoclonal antibody. Journal of General Virology, 1994, 75, 769-778.	2.9	58
76	Latent Membrane Protein 1 Inhibits Epstein-Barr Virus Lytic Cycle Induction and Progress via Different Mechanisms. Journal of Virology, 2003, 77, 5000-5007.	3.4	58
77	Stimulation of human lymphocytes with irradiated cells of the autologous Epstein-Barr virus-transformed cell line. Cellular Immunology, 1982, 67, 129-140.	3.0	57
78	Phosphatidylinositol 3-kinase is essential for the proliferation of lymphoblastoid cells. Oncogene, 2002, 21, 1263-1271.	5.9	55
79	Epstein-Barr virus and Burkitt lymphoma. Chinese Journal of Cancer, 2014, 33, 609-19.	4.9	54
80	Epstein-Barr Virus and Carcinomas Expression of the Viral Genome in an Undifferentiated Gastric Carcinoma. Diagnostic Molecular Pathology, 1992, 1, 103-108.	2.1	53
81	Nuclear Factor κB-Dependent Activation of the Antiapoptotic bfl - 1 Gene by the Epstein-Barr Virus Latent Membrane Protein 1 and Activated CD40 Receptor. Journal of Virology, 2004, 78, 1800-1816.	3.4	52
82	Epsteinâ€Barr Virus–Associated Hemophagocytic Lymphohistiocytosis in Adults Characterized by High Viral Genome Load within Circulating Natural Killer Cells. Clinical Infectious Diseases, 2010, 51, 66-69.	5.8	51
83	The 30-Base-Pair Deletion in Chinese Variants of the Epstein-Barr Virus LMP1 Gene Is Not the Major Effector of Functional Differences between Variant LMP1 Genes in Human Lymphocytes. Journal of Virology, 1998, 72, 4038-4048.	3.4	51
84	The epstein-barr virus: Host balance in acute infectious mononucleosis patients receiving acyclovir anti-viral therapy. International Journal of Cancer, 1989, 43, 61-66.	5.1	50
85	Mechanism of Action of a Novel Latent Membrane Protein-1 Dominant Negative. Journal of Biological Chemistry, 2001, 276, 1195-1203.	3.4	49
86	Cooperation between Epstein-Barr Virus Immune Evasion Proteins Spreads Protection from CD8+ T Cell Recognition across All Three Phases of the Lytic Cycle. PLoS Pathogens, 2014, 10, e1004322.	4.7	47
87	HIV-1 Induces Down-Regulation of bcl-2 Expression and Death by Apoptosis of EBV-Immortalized B Cells: A Model for a Persistent "Self-Limiting" HIV-1 Infection. Virology, 1994, 198, 234-244.	2.4	46
88	Immune responses to Epstein–Barr virus: molecular interactions in the virus evasion of CD8+ T cell immunity. Microbes and Infection, 2010, 12, 173-181.	1.9	46
89	Isolation of a normal B cell subset with a Burkitt-like phenotype and transformationin vitro with Epstein-Barr virus. International Journal of Cancer, 1988, 42, 213-220.	5.1	45
90	Lymphotoxin acts as an autocrine growth factor for Epstein-Barr virus-transformed B cells and differentiated Burkitt lymphoma cell lines. European Journal of Immunology, 1994, 24, 1879-1885.	2.9	45

#	Article	IF	CITATIONS
91	Characterization of the Serological Response in Man to the Latent Membrane Protein and the Six Nuclear Antigens Encoded by Epstein-Barr Virus. Journal of General Virology, 1988, 69, 1217-1228.	2.9	44
92	Deciphering the role of Epstein-Barr virus in the pathogenesis of T and NK cell lymphoproliferations. Herpesviridae, 2011, 2, 8.	2.7	40
93	Characterization of Intercellular Adhesion Molecule-1 Regulation by Epstein-Barr Virus-encoded Latent Membrane Protein-1 Identifies Pathways That Cooperate with Nuclear Factor κB to Activate Transcription. Journal of Biological Chemistry, 2001, 276, 984-992.	3.4	38
94	Epstein–Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression. Nucleic Acids Research, 2015, 43, 3563-3577.	14.5	37
95	EBV BCL-2 homologue BHRF1 drives chemoresistance and lymphomagenesis by inhibiting multiple cellular pro-apoptotic proteins. Cell Death and Differentiation, 2020, 27, 1554-1568.	11.2	35
96	Cyclical Expression of EBV Latent Membrane Protein 1 in EBV-Transformed B Cells Underpins Heterogeneity of Epitope Presentation and CD8+ T Cell Recognition. Journal of Immunology, 2009, 182, 1919-1928.	0.8	31
97	Modulation of B-cell endoplasmic reticulum calcium homeostasis by Epstein-Barr virus Latent Membrane Protein-1. Molecular Cancer, 2009, 8, 59.	19.2	31
98	Epstein-Barr Virus Latent Membrane Protein 1 Increases Calcium Influx through Store-operated Channels in B Lymphoid Cells. Journal of Biological Chemistry, 2011, 286, 18583-18592.	3.4	31
99	Suppression of the <scp>LMP2A</scp> target gene, <i><scp>EGR</scp>â€I </i> , protects Hodgkin's lymphoma cells from entry to the <scp>EBV</scp> lytic cycle. Journal of Pathology, 2013, 230, 399-409.	4.5	31
100	Memory B-cell reconstitution following allogeneic hematopoietic stem cell transplantation is an EBV-associated transformation event. Blood, 2015, 126, 2665-2675.	1.4	31
101	Counteracting Effects of Cellular Notch and Epstein-Barr Virus EBNA2: Implications for Stromal Effects on Virus-Host Interactions. Journal of Virology, 2014, 88, 12065-12076.	3.4	29
102	Innate Immune Recognition of EBV. Current Topics in Microbiology and Immunology, 2015, 391, 265-287.	1.1	29
103	Epstein-Barr Virus Regulates STAT1 through Latent Membrane Protein 1. Journal of Virology, 2003, 77, 4439-4443.	3.4	28
104	Epstein-Barr Virus Represses the FoxO1 Transcription Factor through Latent Membrane Protein 1 and Latent Membrane Protein 2A. Journal of Virology, 2006, 80, 11191-11199.	3.4	27
105	Effect of the ebna-2 gene on the surface antigen phenotype of transfected ebv-negative B-lymphoma lines. International Journal of Cancer, 1990, 45, 77-82.	5.1	26
106	Induction of the Lytic Cycle Sensitizes Epstein-Barr Virus-Infected B Cells to NK Cell Killing That Is Counteracted by Virus-Mediated NK Cell Evasion Mechanisms in the Late Lytic Cycle. Journal of Virology, 2016, 90, 947-958.	3.4	26
107	Sphingosine-1-phosphate signalling drives an angiogenic transcriptional programme in diffuse large B cell lymphoma. Leukemia, 2019, 33, 2884-2897.	7.2	26
108	Herpesviruses Placating the Unwilling Host: Manipulation of the MHC Class II Antigen Presentation Pathway. Viruses, 2012, 4, 1335-1353.	3.3	25

#	Article	IF	CITATIONS
109	Epstein-Barr Virus and the Pathogenesis of T and NK Lymphoma: a Mystery Unsolved. Current Hematologic Malignancy Reports, 2012, 7, 276-284.	2.3	25
110	Isolation and analysis of two strongly transforming isoforms of the Epstein-Barr-virus(EBV)-encoded latent membrane protein-1 (LMP1) from a single Hodgkin's lymphoma. , 1998, 76, 194-200.		22
111	CD99 expression is positively regulated by Sp1 and is negatively regulated by Epstein-Barr virus latent membrane protein 1 through nuclear factor-I®B. Blood, 2001, 97, 3596-3604.	1.4	22
112	Coordinated repression of BIM and PUMA by Epstein–Barr virus latent genes maintains the survival of Burkitt lymphoma cells. Cell Death and Differentiation, 2018, 25, 241-254.	11.2	20
113	Viral latent membrane protein 1 (LMP-1)–induced CD99 down-regulation in B cells leads to the generation of cells with Hodgkin's and Reed-Sternberg phenotype. Blood, 2000, 95, 294-300.	1.4	20
114	Epstein-Barr virus gene expression in post-transplant lymphoproliferative disorders. Seminars in Immunopathology, 1998, 20, 389-403.	4.0	18
115	Kaposi's Sarcoma-Associated Herpesvirus-Encoded Viral IRF3 Modulates Major Histocompatibility Complex Class II (MHC-II) Antigen Presentation through MHC-II Transactivator-Dependent and -Independent Mechanisms: Implications for Oncogenesis. Journal of Virology, 2013, 87, 5340-5350.	3.4	18
116	Identification of Epstein-Barr Virus Replication Proteins in Burkitt's Lymphoma Cells. Pathogens, 2015, 4, 739-751.	2.8	17
117	Establishment of an EBV-positive lymphoblastoid cell line that grows as a lymphoma in nude mice and expresses membrane CD2 molecules. International Journal of Cancer, 1990, 45, 299-307.	5.1	15
118	Reduced Signal Transduction through Glucocorticoid Receptor in Burkitt's Lymphoma Cell Lines. Virology, 1994, 199, 339-353.	2.4	15
119	Epstein-Barr Virus Latent Membrane Protein-1 Mediates Upregulation of Tumor Necrosis Factor-α in EBV-Infected T Cells: Implications for the Pathogenesis of Hemophagocytic Syndrome. Journal of Biomedical Science, 2003, 10, 146-155.	7.0	15
120	Epstein–Barr virus induces a distinct form of DNA-bound STAT1 compared with that found in interferon-stimulated B lymphocytes. Journal of General Virology, 2007, 88, 1876-1886.	2.9	15
121	Epstein-Barr Virus and Carcinomas Expression of the Viral Genome in an Undifferentiated Gastric Carcinoma. Diagnostic Molecular Pathology, 1992, 1, 103-108.	2.1	14
122	NF-κB is required for cell death induction by latent membrane protein 1 of Epstein–Barr virus. Cellular Signalling, 2003, 15, 423-433.	3.6	14
123	CD154 Tone Sets the Signaling Pathways and Transcriptome Generated in Model CD40-Pluricompetent L3055 Burkitt's Lymphoma Cells. Journal of Immunology, 2007, 179, 2705-2712.	0.8	14
124	Arginine Methyltransferases Are Regulated by Epstein-Barr Virus in B Cells and Are Differentially Expressed in Hodgkin's Lymphoma. Pathogens, 2012, 1, 52-64.	2.8	14
125	Stimulation of human lymphocytes with irradiated cells of the autologous Epstein-Barr virus-transformed cell line. Cellular Immunology, 1982, 67, 141-151.	3.0	13
126	Epstein-Barr virus latent genes in tumour cells of Hodgkin's disease. Lancet, The, 1991, 337, 1617.	13.7	13

#	Article	IF	CITATIONS
127	Cytogenetic Rearrangement of C-MYC Oncogene Occurs Prior to Infection with Epstein-Barr Virus in the Monoclonal Malignant B Cells From an AIDS Patient. Leukemia and Lymphoma, 1993, 9, 157-164.	1.3	13
128	MHC class II-restricted presentation of endogenously synthesized antigen: Epstein-Barr virus transformed B cell lines can present the viral glycoprotein gp340 by two distinct pathways. International Immunology, 1993, 5, 451-460.	4.0	13
129	Susceptibility of B lymphocytes to adenovirus type 5 infection is dependent upon both coxsackie–adenovirus receptor and αvβ5 integrin expression. Journal of General Virology, 2005, 86, 1669-1679.	2.9	13
130	Epstein-Barr virus transforming proteins. Seminars in Virology, 1994, 5, 391-399.	3.9	12
131	STAT1 contributes to the maintenance of the latency III viral programme observed in Epstein-Barr virus-transformed B cells and their recognition by CD8+ T cells. Journal of General Virology, 2009, 90, 2239-2250.	2.9	12
132	Induction of Interferon-Stimulated Genes on the IL-4 Response Axis by Epstein-Barr Virus Infected Human B Cells; Relevance to Cellular Transformation. PLoS ONE, 2013, 8, e64868.	2.5	12
133	Epstein-barr virus latent membrane protein-1 mediates upregulation of tumor necrosis factor-α in EBV-infected T cells: Implications for the pathogenesis of hemophagocytic syndrome. Journal of Biomedical Science, 2003, 10, 146-155.	7.0	11
134	Hypomethylation and Over-Expression of the Beta Isoform of BLIMP1 is Induced by Epstein-Barr Virus Infection of B Cells; Potential Implications for the Pathogenesis of EBV-Associated Lymphomas. Pathogens, 2012, 1, 83-101.	2.8	10
135	Epstein-barr virus-specific t-cell recognition of B-cell transformants expressing different ebna 2 antigens. International Journal of Cancer, 1987, 39, 373-379.	5.1	9
136	The level of expression of class-I MHC antigens in adenovirus-transformed human cell lines. International Journal of Cancer, 1987, 40, 213-219.	5.1	9
137	Lymphoblastoid cells transfected with c-myc: Downregulation of EBV-lytic antigens and impaired response of autologousCD4+ T cellsin vitro. , 1996, 68, 810-816.		8
138	Cross-recognition of a mouse H-2-peptide complex by human HLA-restricted cytotoxic T cells. European Journal of Immunology, 1990, 20, 659-664.	2.9	7
139	Analysis of human tumour necrosis factor receptor 1 dominant-negative mutants reveals a major region controlling cell surface expression. FEBS Letters, 2004, 570, 138-142.	2.8	7
140	Cell transformation induced by Epstein–Barr virus—living dangerously. Seminars in Cancer Biology, 2001, 11, 403-405.	9.6	6
141	Detection of EBV Latent Proteins by Western Blotting. , 2001, 174, 229-242.		6
142	Burkitt-like lymphoma in an English child: Characterisation of tumour biopsy cells and of the derived tumour cell line. British Journal of Cancer, 1986, 54, 385-391.	6.4	5
143	Selective reactivation of Epstein-Barr virus-specific cytotoxic T cells by stimulation in vitro with allogeneic virus-transformed HLA-homozygous typing cells. Human Immunology, 1983, 6, 151-165.	2.4	4
144	Restoration of the LFA-3 adhesion pathway in Burkitt's lymphoma cells using an LFA-3 recombinant vaccinia virus: consequences for T cell recognition. European Journal of Immunology, 1992, 22, 1741-1748.	2.9	4

#	Article	IF	CITATIONS
145	The Epstein-Barr Virus BamHI C Promoter Is Not Essential for B Cell ImmortalizationIn Vitro, but It Greatly Enhances B Cell Growth Transformation. Journal of Virology, 2015, 89, 2483-2493.	3.4	4
146	Human Lymphocyte Ecto-5′-Nucleotidase is Not Directly Involved in Immunoglobulin Production. Biochemical Society Transactions, 1979, 7, 997-998.	3.4	3
147	Characterization of a CD40-Dominant Inhibitory Receptor Mutant. Journal of Immunology, 2001, 167, 6388-6393.	0.8	3
148	Three Restricted Forms of Epstein-Barr Virus Latency Counteracting Apoptosis in c-Myc Expressing Burkitt Lymphoma Cells Blood, 2007, 110, 1572-1572.	1.4	2
149	Epstein-Barr virus gene expression in post-transplant lymphoproliferative disorders. Seminars in Immunopathology, 1998, 20, 389-403.	4.0	1
150	EBV, molecular mimicry and rheumatoid arthritis: a hypothesis. Immunology Letters, 1989, 20, 93.	2.5	0
151	Immunity to Oncogenic Viruses. , 2016, , 363-374.		Ο