
Francesco Dell'Accio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9162280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vivo potency assay for the screening of bioactive molecules on cartilage formation. Lab Animal, 2022, 51, 103-120.	0.4	3
2	Lessons from joint development for cartilage repair in the clinic. Developmental Dynamics, 2021, 250, 360-376.	1.8	5
3	Alphaâ€lâ€entitrypsin reduces inflammation and exerts chondroprotection in arthritis. FASEB Journal, 2021, 35, e21472.	0.5	14
4	Calcium calmodulin kinase II activity is required for cartilage homeostasis in osteoarthritis. Scientific Reports, 2021, 11, 5682.	3.3	14
5	Update on pain in arthritis. Current Opinion in Supportive and Palliative Care, 2021, 15, 99-107.	1.3	6
6	WNT3Aâ€loaded exosomes enable cartilage repair. Journal of Extracellular Vesicles, 2021, 10, e12088.	12.2	24
7	Agrin induces long-term osteochondral regeneration by supporting repair morphogenesis. Science Translational Medicine, 2020, 12, .	12.4	30
8	ROR2 blockade as a therapy for osteoarthritis. Science Translational Medicine, 2020, 12, .	12.4	34
9	BCP crystals promote chondrocyte hypertrophic differentiation in OA cartilage by sequestering Wnt3a. Annals of the Rheumatic Diseases, 2020, 79, 975-984.	0.9	37
10	Does Pain at an Earlier Stage of Chondropathy Protect Female Mice Against Structural Progression After Surgically Induced Osteoarthritis?. Arthritis and Rheumatology, 2020, 72, 2083-2093.	5.6	22
11	Regulation of Gdf5 expression in joint remodelling, repair and osteoarthritis. Scientific Reports, 2020, 10, 157.	3.3	44
12	Neutrophil Microvesicles from Healthy Control and Rheumatoid Arthritis Patients Prevent the Inflammatory Activation of Macrophages. EBioMedicine, 2018, 29, 60-69.	6.1	81
13	High fat diet accelerates cartilage repair in DBA/1 mice. Journal of Orthopaedic Research, 2017, 35, 1258-1264.	2.3	4
14	WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Annals of the Rheumatic Diseases, 2017, 76, 218-226.	0.9	110
15	Regenerative Medicine and Tissue Engineering. , 2017, , 90-105.e4.		1
16	Inhibition of Notch1 promotes hedgehog signalling in a HES1-dependent manner in chondrocytes and exacerbates experimental osteoarthritis. Annals of the Rheumatic Diseases, 2016, 75, 2037-2044.	0.9	29
17	Agrin mediates chondrocyte homeostasis and requires both LRP4 and α-dystroglycan to enhance cartilage formation in vitro and in vivo. Annals of the Rheumatic Diseases, 2016, 75, 1228-1235.	0.9	46
18	PPARγ/mTOR signalling: striking the right balance in cartilage homeostasis. Annals of the Rheumatic Diseases, 2015, 74, 477-479.	0.9	11

FRANCESCO DELL'ACCIO

#	Article	IF	CITATIONS
19	A homeostatic function of CXCR2 signalling in articular cartilage. Annals of the Rheumatic Diseases, 2015, 74, 2207-2215.	0.9	62
20	Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Science Translational Medicine, 2015, 7, 315ra190.	12.4	256
21	Articular Chondroprogenitor Cells Maintain Chondrogenic Potential but Fail to Form a Functional Matrix When Implanted Into Muscles of SCID Mice. Cartilage, 2014, 5, 231-240.	2.7	21
22	Culture Expansion in Low-Glucose Conditions Preserves Chondrocyte Differentiation and Enhances Their Subsequent Capacity to Form Cartilage Tissue in Three-Dimensional Culture. BioResearch Open Access, 2014, 3, 9-18.	2.6	29
23	Analyses on the mechanisms that underlie the chondroprotective properties of calcitonin. Biochemical Pharmacology, 2014, 91, 348-358.	4.4	11
24	Cellular and molecular mechanisms of cartilage damage and repair. Drug Discovery Today, 2014, 19, 1172-1177.	6.4	44
25	A novel mechanism for protecting the arthritic joint: microparticles deliver Annexin A1 into cartilage (146.8). FASEB Journal, 2014, 28, 146.8.	0.5	1
26	Syndecan 4 supports bone fracture repair, but not fetal skeletal development, in mice. Arthritis and Rheumatism, 2013, 65, 743-752.	6.7	44
27	Neutrophilâ€Derived Microparticles as Novel Effectors in Joint Disease. FASEB Journal, 2013, 27, 137.6.	0.5	0
28	Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis and Rheumatism, 2011, 63, 1289-1300.	6.7	168
29	WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways. Journal of Cell Biology, 2011, 193, 551-564.	5.2	175
30	Human single hain variable fragment that specifically targets arthritic cartilage. Arthritis and Rheumatism, 2010, 62, 1007-1016.	6.7	39
31	Distinct mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology, 2009, 48, 1057-1064.	1.9	77
32	A biomarkerâ€based mathematical model to predict boneâ€forming potency of human synovial and periosteal mesenchymal stem cells. Arthritis and Rheumatism, 2008, 58, 240-250.	6.7	116
33	Identification of the molecular response of articular cartilage to injury, by microarray screening: Wntâ€16 expression and signaling after injury and in osteoarthritis. Arthritis and Rheumatism, 2008, 58, 1410-1421.	6.7	181
34	Mature antigenâ€experienced T helper cells synthesize and secrete the B cell chemoattractant CXCL13 in the inflammatory environment of the rheumatoid joint. Arthritis and Rheumatism, 2008, 58, 3377-3387.	6.7	124
35	Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. Differentiation, 2008, 76, 946-957.	1.9	109
36	Mesenchymal stem cells in rheumatology: a regenerative approach to joint repair. Clinical Science, 2007, 113, 339-348.	4.3	46

Francesco Dell'Accio

#	Article	IF	CITATIONS
37	Joint Tissue Engineering. , 2007, , 107-123.		2
38	Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Research and Therapy, 2006, 8, R139.	3.5	139
39	The stem cell niche: a new target in medicine. Current Opinion in Orthopaedics, 2006, 17, 398-404.	0.3	8
40	Efficient Lentiviral Transduction and Improved Engraftment of Human Bone Marrow Mesenchymal Cells. Stem Cells, 2006, 24, 896-907.	3.2	94
41	Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis and Rheumatism, 2006, 54, 1209-1221.	6.7	377
42	Reparative medicine: from tissue engineering to joint surface regeneration. Regenerative Medicine, 2006, 1, 59-69.	1.7	15
43	Failure of in vitro–differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis and Rheumatism, 2004, 50, 142-150.	6.7	387
44	Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation. Journal of Orthopaedic Research, 2003, 21, 123-131.	2.3	132
45	Microenvironment and phenotypic stability specify tissue formation by human articular cartilage-derived cells in vivo. Experimental Cell Research, 2003, 287, 16-27.	2.6	118
46	Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. Journal of Cell Biology, 2003, 160, 909-918.	5.2	602
47	Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis and Rheumatism, 2001, 44, 85-95.	6.7	506
48	Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Arthritis and Rheumatism, 2001, 44, 1608-1619.	6.7	306
49	Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis and Rheumatism, 2001, 44, 1928-1942.	6.7	1,638
50	Skeletal tissue engineering: opportunities and challenges. Best Practice and Research in Clinical Rheumatology, 2001, 15, 759-769.	3.3	44