Gareth W Griffith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/916159/publications.pdf Version: 2024-02-01

		61984	31849
106	17,246	43	101
papers	citations	h-index	g-index
111	111	111	17127
111	111	111	1/15/
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for <i>Fungi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6241-6246.	7.1	4,012
2	Towards a unified paradigm for sequenceâ€based identification of fungi. Molecular Ecology, 2013, 22, 5271-5277.	3.9	2,997
3	A higher-level phylogenetic classification of the Fungi. Mycological Research, 2007, 111, 509-547.	2.5	1,994
4	Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature, 2006, 443, 818-822.	27.8	1,625
5	The Ascomycota Tree of Life: A Phylum-wide Phylogeny Clarifies the Origin and Evolution of Fundamental Reproductive and Ecological Traits. Systematic Biology, 2009, 58, 224-239.	5.6	581
6	FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 2020, 105, 1-16.	12.3	387
7	Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity, 2015, 75, 27-274.	12.3	375
8	A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia, 2006, 98, 860-871.	1.9	357
9	Anaerobic fungi (phylum <i>Neocallimastigomycota</i>): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiology Ecology, 2014, 90, 1-17.	2.7	298
10	Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau061-bau061.	3.0	272
11	A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia, 2006, 98, 860-871.	1.9	224
12	Preserving Accuracy in GenBank. Science, 2008, 319, 1616-1616.	12.6	198
13	Polymorphisms in <i>Phytophthora infestans</i> : Four Mitochondrial Haplotypes Are Detected after PCR Amplification of DNA from Pure Cultures or from Host Lesions. Applied and Environmental Microbiology, 1998, 64, 4007-4014.	3.1	178
14	Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME Journal, 2011, 5, 150-160.	9.8	149
15	Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen. FEMS Microbiology Ecology, 2008, 66, 537-545.	2.7	146
16	A fungal perspective on conservation biology. Conservation Biology, 2015, 29, 61-68.	4.7	125
17	The legacy effect of cover crops on soil fungal populations in a cereal rotation. Agriculture, Ecosystems and Environment, 2016, 228, 49-61.	5.3	122
18	New aspects and strategies for methane mitigation from ruminants. Applied Microbiology and Biotechnology, 2014, 98, 31-44.	3.6	120

#	Article	IF	CITATIONS
19	PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi: Insights, Challenges and Opportunities. Frontiers in Microbiology, 2017, 8, 1657.	3.5	118
20	<i>Moniliophthora perniciosa</i> , the causal agent of witches' broom disease of cacao: what's new from this old foe?. Molecular Plant Pathology, 2008, 9, 577-588.	4.2	116
21	Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales). Fungal Diversity, 2014, 64, 1-99.	12.3	108
22	Migration of heavy metals in soil as influenced by compost amendments. Environmental Pollution, 2010, 158, 55-64.	7.5	106
23	Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MycoKeys, 0, 9, 11-28.	1.9	95
24	Identification and characterization of high-flux-control genes of yeast through competition analyses in continuous cultures. Nature Genetics, 2008, 40, 113-117.	21.4	93
25	Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiology Ecology, 2014, 89, 222-237.	2.7	90
26	<i>Pecoramyces ruminantium</i> , gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia, 2017, 109, 231-243.	1.9	89
27	An automated system for measuring gas production from forages inoculated with rumen fluid and its use in determining the effect of enzymes on grass silage. Animal Feed Science and Technology, 2000, 83, 205-221.	2.2	83
28	Factors affecting rumen methanogens and methane mitigation strategies. World Journal of Microbiology and Biotechnology, 2009, 25, 1557-1566.	3.6	75
29	Temperate airborne grass pollen defined by spatio-temporal shifts in community composition. Nature Ecology and Evolution, 2019, 3, 750-754.	7.8	75
30	Diversity of anaerobic fungal populations in cattle revealed by selective enrichment culture using different carbon sources. Fungal Ecology, 2009, 2, 87-97.	1.6	73
31	A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biology, 2015, 119, 731-737.	2.5	71
32	Do we need a global strategy for microbial conservation?. Trends in Ecology and Evolution, 2012, 27, 1-2.	8.7	69
33	A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard. Fungal Ecology, 2013, 6, 168-176.	1.6	66
34	The breeding biology of biotypes of the witches' broom pathogen of cocoa, Crinipellis perniciosa. Heredity, 1994, 72, 278-289.	2.6	65
35	Witches' brooms and frosty pods: Two major pathogens of cacao. New Zealand Journal of Botany, 2003, 41, 423-435.	1.1	64
36	Microbial diversity and activity are increased by compost amendment of metal-contaminated soil. FEMS Microbiology Ecology, 2010, 71, 94-105.	2.7	62

#	Article	IF	CITATIONS
37	Horizontal Gene Transfer as an Indispensable Driver for Evolution of Neocallimastigomycota into a Distinct Gut-Dwelling Fungal Lineage. Applied and Environmental Microbiology, 2019, 85, .	3.1	61
38	<i>Cyllamyces aberensis</i> gen.nov. sp.nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Canadian Journal of Botany, 2001, 79, 666-673.	1.1	61
39	Vacuum packing: a model system for laboratory-scale silage fermentations. Journal of Applied Microbiology, 2005, 98, 106-113.	3.1	54
40	High-Throughput Metabolic Fingerprinting of Legume Silage Fermentations via Fourier Transform Infrared Spectroscopy and Chemometrics. Applied and Environmental Microbiology, 2004, 70, 1583-1592.	3.1	52
41	A Multi-Kingdom Study Reveals the Plasticity of the Rumen Microbiota in Response to a Shift From Non-grazing to Grazing Diets in Sheep. Frontiers in Microbiology, 2019, 10, 122.	3.5	52
42	Liebetanzomyces polymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys, 2018, 40, 89-110.	1.9	52
43	Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum. Mycologia, 2020, 112, 1212-1239.	1.9	50
44	Contrasts between the cryoconite and ice-marginal bacterial communities of Svalbard glaciers. Polar Research, 2013, 32, 19468.	1.6	46
45	Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity: A review. Journal of Integrative Agriculture, 2015, 14, 550-560.	3.5	46
46	The use of extracellular DNA as a proxy for specific microbial activity. Applied Microbiology and Biotechnology, 2018, 102, 2885-2898.	3.6	45
47	Ecology and diversity of waxcap (<i>Hygrocybe</i> spp.) Fungi. Botanical Journal of Scotland, 2002, 54, 7-22.	0.3	44
48	Copper deficiency in potato dextrose agar causes reduced pigmentation in cultures of various fungi. FEMS Microbiology Letters, 2007, 276, 165-171.	1.8	44
49	Agricultural management affects communities of culturable root-endophytic fungi in temperate grasslands. Soil Biology and Biochemistry, 2003, 35, 1143-1154.	8.8	43
50	Differentiation of Phytophthora infestans Sporangia from Other Airborne Biological Particles by Flow Cytometry. Applied and Environmental Microbiology, 2002, 68, 37-45.	3.1	41
51	The rapid differentiation of Streptomyces isolates using Fourier transform infrared spectroscopy. Vibrational Spectroscopy, 2006, 40, 213-218.	2.2	39
52	Anaerobic fungi: Neocallimastigomycota. IMA Fungus, 2010, 1, 181-185.	3.8	39
53	Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants. Bioresource Technology, 2017, 235, 131-139.	9.6	39
54	Anaerobic Fungi and Their Potential for Biogas Production. Advances in Biochemical Engineering/Biotechnology, 2015, 151, 41-61.	1.1	35

#	Article	IF	CITATIONS
55	Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals. Fungal Diversity, 2021, 109, 59-98.	12.3	35
56	<i>Cyllamyces aberensis</i> gen.nov. sp.nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Canadian Journal of Botany, 2001, 79, 666-673.	1.1	33
57	Maternal versus artificial rearing shapes the rumen microbiome having minor longâ€ŧerm physiological implications. Environmental Microbiology, 2019, 21, 4360-4377.	3.8	33
58	Spatial distribution of mycelia of the liana (Lâ€) biotype of the agaric Crinipellis perniciosa (Stahel) Singer in tropical forest. New Phytologist, 1994, 127, 243-259.	7.3	31
59	Genetic variability and chromosome-length polymorphisms of the witches' broom pathogen Crinipellis perniciosa from various plant hosts in South America. Mycological Research, 2006, 110, 821-832.	2.5	31
60	Efficient Improvement of Silage Additives by Using Genetic Algorithms. Applied and Environmental Microbiology, 2000, 66, 1435-1443.	3.1	28
61	Predicting the severity of the grass pollen season and the effect of climate change in Northwest Europe. Science Advances, 2021, 7, .	10.3	28
62	Hyphae of waxcap fungi colonise plant roots. Fungal Ecology, 2013, 6, 487-492.	1.6	26
63	Effect of genotype of Trifolium repens on mycorrhizal symbiosis with Glomus mosseae. Journal of Agricultural Science, 2001, 137, 27-36.	1.3	24
64	Spectroscopic monitoring of NO traces in plants and human breath: applications and perspectives. Applied Physics B: Lasers and Optics, 2013, 110, 203-211.	2.2	23
65	Genomeâ€wide analysis of longevity in nutrientâ€deprived <i>Saccharomyces cerevisiae</i> reveals importance of recycling in maintaining cell viability. Environmental Microbiology, 2012, 14, 1249-1260.	3.8	21
66	Environmental DNA reveals links between abundance and composition of airborne grass pollen and respiratory health. Current Biology, 2021, 31, 1995-2003.e4.	3.9	21
67	The use of stable isotopes in fungal ecology. The Mycologist, 2004, 18, 177-183.	0.4	19
68	The international conservation importance of Welsh â€~waxcap' grasslands. Mycosphere, 2013, 4, 969-984.	6.1	19
69	Isotopic evidence of biotrophy and unusual nitrogen nutrition in soilâ€dwelling Hygrophoraceae. Environmental Microbiology, 2018, 20, 3573-3588.	3.8	18
70	HOMOLOGY AT THE AMINO ACID LEVEL BETWEEN PLANT PHYTOCHROMES AND A REGULATOR OF ASEXUAL SPORULATION IN Emericella (=Aspergillus) nidulans. Photochemistry and Photobiology, 1994, 59, 252-256.	2.5	17
71	Mycoparasitism between Squamanita paradoxa and Cystoderma amianthinum (Cystodermateae,) Tj ETQq1 1 0.7	84314 rgl 0.8	3T_/Overlock 17
72	Enumeration of methanogens with a focus on fluorescence in situ hybridization. Die	1.6	17

Naturwissenschaften, 2011, 98, 457-472.

1.6 17

#	Article	IF	CITATIONS
73	Vegetation and edaphic factors influence rapid establishment of distinct fungal communities on former coal-spoil sites. Fungal Ecology, 2018, 33, 92-103.	1.6	16
74	Dual culture ofCrinipellis perniciosa and potato callus. European Journal of Plant Pathology, 1994, 100, 371-379.	1.7	15
75	Group project work in biotechnology and its impact on key skills. Journal of Biological Education, 2001, 35, 133-140.	1.5	14
76	Chapter 15 Saprotrophic basidiomycetes in grasslands: Distribution and function. British Mycological Society Symposia Series, 2008, 28, 277-299.	0.5	14
77	Dose-dependent behavioural fever responses in desert locusts challenged with the entomopathogenic fungus Metarhizium acridum. Scientific Reports, 2018, 8, 14222.	3.3	14
78	Reclassification of Parapterulicium Corner (Pterulaceae, Agaricales), contributions to Lachnocladiaceae and Peniophoraceae (Russulales) and introduction of Baltazaria gen. nov MycoKeys, 2018, 37, 39-56.	1.9	14
79	The diverse habitats of Hygrocybe – peeking into an enigmatic lifestyle. Mycosphere, 2013, 4, 773-792.	6.1	14
80	Use of earthworm casts to validate FT-IR spectroscopy as a †̃sentinel' technology for high-throughput monitoring of global changes in microbial ecologyThe 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia, 2003, 47, 440-446.	1.2	12
81	Food quality and microbial succession in ageing earthworm casts: standard microbial indices and metabolic fingerprintingThe 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia, 2003, 47, 888-894.	1.2	12
82	An antibacterial hydroxy fusidic acid analogue from Acremonium crotocinigenum. Phytochemistry, 2006, 67, 2110-2114.	2.9	12
83	Enhanced Access to Rare Brain cDNAs by Prescreening Libraries: 207 New Mouse Brain ESTs. Genomics, 1994, 24, 456-463.	2.9	11
84	Above―and belowâ€ground responses of <i>Calamagrostis purpurea</i> to UVâ€B radiation and elevated CO ₂ under phosphorus limitation. Physiologia Plantarum, 2012, 145, 619-628.	5.2	11
85	Reclassification of Pterulaceae Corner (Basidiomycota: Agaricales) introducing the ant-associated genus Myrmecopterula gen. nov., Phaeopterula Henn. and the corticioid Radulomycetaceae fam. nov IMA Fungus, 2020, 11, 2.	3.8	11
86	Taxonomy of the anaerobic gut fungi (Neocallimastigomycota): a review of classification criteria and description of current taxa. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	11
87	Variation in Soil Fungal Composition Associated with the Invasion of Stellera chamaejasme L. in Qinghai–Tibet Plateau Grassland. Microorganisms, 2019, 7, 587.	3.6	10
88	Effects of manipulating the protein content of white clover on silage quality. Animal Feed Science and Technology, 2004, 116, 319-331.	2.2	9
89	Hodophilus (Clavariaceae, Agaricales) species with dark dots on the stipe: more than one species in Europe. Mycological Progress, 2017, 16, 811-821.	1.4	8
90	Late blight (Phytophthora infestans) on tomato in the tropics. The Mycologist, 1995, 9, 87-89.	0.4	7

#	Article	IF	CITATIONS
91	Sward management influences fruiting of grassland basidiomycete fungi. Biological Conservation, 2012, 145, 234-240.	4.1	7
92	Effect of biocides on the fruiting of waxcap fungi. Fungal Ecology, 2014, 7, 67-69.	1.6	7
93	Saprotrophic proteomes of biotypes of the witches' broom pathogen Moniliophthora perniciosa. Fungal Biology, 2017, 121, 743-753.	2.5	7
94	Increased Male-Male Mounting Behaviour in Desert Locusts during Infection with an Entomopathogenic Fungus. Scientific Reports, 2017, 7, 5659.	3.3	7
95	Soil stabilisation for DNA metabarcoding of plants and fungi. Implications for sampling at remote locations or via third-parties. Metabarcoding and Metagenomics, 0, 4, .	0.0	7
96	Wild-type and mutant alleles of the Aspergillus nidulans developmental regulator gene brlA: correlation of variant sites with protein function. Molecular Genetics and Genomics, 1999, 262, 892-897.	2.4	5
97	Strangler unmasked: Parasitism of Cystoderma amianthinum by Squamanita paradoxa and S.Âpearsonii. Fungal Ecology, 2019, 39, 131-141.	1.6	5
98	Mulching has negative impact on fungal and plant diversity in Slovak oligotrophic grasslands. Basic and Applied Ecology, 2021, 52, 24-37.	2.7	5
99	Crystallicutis gen. nov. (Irpicaceae, Basidiomycota), including C.Âdamiettensis sp. nov., found on Phoenix dactylifera (date palm) trunks in the Nile Delta of Egypt. Fungal Biology, 2021, 125, 447-458.	2.5	3
100	Earthworm-Collembola interactions affecting water-soluble nutrients, fauna and physiochemistry in a mesocosm manure-straw composting experiment. Waste Management, 2021, 134, 57-66.	7.4	3
101	17 The Biotechnological Potential of Anaerobic Gut Fungi. , 2020, , 413-437.		3
102	The survival of anaerobic fungi in cattle faeces. FEMS Microbiology Ecology, 1999, 29, 293-300.	2.7	2
103	Genome Sequence Analysis of Two Pseudomonas putida Strains to Identify a 17-Hydroxylase Putatively Involved in Sparteine Degradation. Current Microbiology, 2018, 75, 1649-1654.	2.2	1
104	Factors affecting the local distribution of Polystigma rubrum stromata on Prunus spinosa. Plant Ecology and Evolution, 2018, 151, 278-283.	0.7	1
105	On biodiversity. New Scientist, 2010, 206, 28-29.	0.0	0
106	Let's protect life's silent majority. New Scientist, 2012, 213, 28-29.	0.0	0