Baoping Xin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9161484/publications.pdf

Version: 2024-02-01

361413 289244 1,669 52 20 40 citations h-index g-index papers 52 52 52 1353 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresource Technology, 2009, 100, 6163-6169.	9.6	273
2	Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. Journal of Cleaner Production, 2016, 116, 249-258.	9.3	206
3	Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration. Chemosphere, 2014, 109, 92-98.	8.2	104
4	Extraction of manganese from electrolytic manganese residue by bioleaching. Bioresource Technology, 2011, 102, 1683-1687.	9.6	100
5	Bioleaching of zinc and manganese from spent Zn–Mn batteries and mechanism exploration. Bioresource Technology, 2012, 106, 147-153.	9.6	93
6	Study on the extraction of dyes into a room-temperature ionic liquid and their mechanisms. Journal of Chemical Technology and Biotechnology, 2007, 82, 196-204.	3.2	61
7	Functional exploration of extracellular polymeric substances (EPS) in the bioleaching of obsolete electric vehicle LiNixCoyMn1-x-yO2 Li-ion batteries. Journal of Hazardous Materials, 2018, 354, 250-257.	12.4	58
8	Analysis of reasons for decline of bioleaching efficiency of spent Zn–Mn batteries at high pulp densities and exploration measure for improving performance. Bioresource Technology, 2012, 112, 186-192.	9.6	52
9	Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10%. Journal of Hazardous Materials, 2015, 298, 170-177.	12.4	50
10	Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria. Journal of Environmental Management, 2015, 159, 11-17.	7.8	37
11	Life cycle assessment of a bio-hydrometallurgical treatment of spent ZnMn batteries. Journal of Cleaner Production, 2016, 129, 350-358.	9.3	36
12	Optimization of bioleaching conditions for metal removal from spent zincâ€manganese batteries using response surface methodology. Journal of Chemical Technology and Biotechnology, 2016, 91, 608-617.	3.2	30
13	High-Yield Extracellular Biosynthesis of ZnS Quantum Dots through a Unique Molecular Mediation Mechanism by the Peculiar Extracellular Proteins Secreted by a Mixed Sulfate Reducing Bacteria. ACS Applied Materials & Interfaces, 2019, 11, 10442-10451.	8.0	28
14	A feasible method for growing fungal pellets in a column reactor inoculated with mycelium fragments and their application for dye bioaccumulation from aqueous solution. Bioresource Technology, 2012, 105, 100-105.	9.6	27
15	Quantitative trait loci (QTL) associated with growth rate trait in common carp (Cyprinus carpio). Aquaculture International, 2013, 21, 1373-1379.	2.2	25
16	Pyrometallurgy coupling bioleaching for recycling of waste printed circuit boards. Resources, Conservation and Recycling, 2022, 178, 106018.	10.8	24
17	Bioaccumulation of Cu-complex reactive dye by growing pellets of Penicillium oxalicum and its mechanism. Water Research, 2010, 44, 3565-3572.	11.3	23
18	New insight into cleaner control of heavy metal anode slime from aqueous sulfate electrolytes containing Mn (â¡): Preliminary characterization and mechanism analysis. Journal of Cleaner Production, 2018, 177, 276-283.	9.3	23

#	Article	IF	CITATIONS
19	Deep removal of arsenic from regenerated products of spent V2O5-WO3/TiO2 SCR catalysts and its concurrent activation by bioleaching through a novel mechanism. Chemical Engineering Journal, 2021, 420, 127722.	12.7	23
20	Controllable biosynthesis of high-purity lead-sulfide (PbS) nanocrystals by regulating the concentration of polyethylene glycol in microbial system. Bioprocess and Biosystems Engineering, 2016, 39, 1839-1846.	3.4	21
21	Controlled Biosynthesis of ZnCdS Quantum Dots with Visible-Light-Driven Photocatalytic Hydrogen Production Activity. Nanomaterials, 2021, 11, 1357.	4.1	21
22	Reductive dissolution of manganese from manganese dioxide ore by autotrophic mixed culture under aerobic conditions. Journal of Cleaner Production, 2015, 92, 54-64.	9.3	20
23	Mn bio-dissolution from low-grade MnO 2 ore and simultaneous Fe precipitation in presence of waste electrolytic manganese anolyte as nitrogen source and iron scavenger. Journal of Cleaner Production, 2017, 158, 182-191.	9.3	20
24	Preparation of Zn–Mn ferrite from spent Zn–Mn batteries using a novel multi-step process of bioleaching and co-precipitation and boiling reflux. Hydrometallurgy, 2015, 153, 66-73.	4.3	19
25	Biosynthesis of high-purity \hat{I}^3 -MnS nanoparticle by newly isolated Clostridiaceae sp. and its properties characterization. Bioprocess and Biosystems Engineering, 2015, 38, 219-227.	3.4	19
26	Controllable biosynthesis and characterization of \hat{l} ±-ZnS and \hat{l}^2 -ZnS quantum dots: Comparing their optical properties. Materials Science in Semiconductor Processing, 2016, 56, 115-118.	4.0	19
27	Bioleaching of Mn from manganese residues by the mixed culture of Acidithiobacillus and mechanism. Journal of Chemical Technology and Biotechnology, 2011, 86, 832-837.	3.2	18
28	Improved bioleaching of copper and zinc from brake pad waste by low-temperature thermal pretreatment and its mechanisms. Waste Management, 2019, 87, 629-635.	7.4	18
29	Extracellular biosynthesis of Cu2-xSe nanocrystallites with photocatalytic activity. Materials Research Bulletin, 2019, 111, 126-132.	5.2	18
30	Controlled extracellular biosynthesis of ZnS quantum dots by sulphate reduction bacteria in the presence of hydroxypropyl starch as a mediator. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	16
31	Indirect bioleaching recovery of valuable metals from electroplating sludge and optimization of various parameters using response surface methodology (RSM). Journal of Environmental Management, 2022, 312, 114927.	7.8	16
32	Generation behavior of extracellular polymeric substances and its correlation with extraction efficiency of valuable metals and change of process parameters during bioleaching of spent petroleum catalyst. Chemosphere, 2021, 275, 130006.	8.2	15
33	Controllable extracellular biosynthesis of bismuth sulfide nanostructure by sulfateâ€reducing bacteria in water–oil twoâ€phase system. Biotechnology Progress, 2014, 30, 960-966.	2.6	14
34	Highâ€purity nano particles ZnS production by a simple coupling reaction process of biological reduction and chemical precipitation mediated with EDTA. Biotechnology Progress, 2008, 24, 1171-1177.	2.6	13
35	Mercury (II) Adsorption on Three Contrasting Chinese Soils Treated with Two Sources of Dissolved Organic Matter: II. Spectroscopic Characterization. Soil and Sediment Contamination, 2015, 24, 719-730.	1.9	13
36	Screening Bioleaching Systems and Operational Conditions for Optimal Ni Recovery from Dry Electroplating Sludge and Exploration of the Leaching Mechanisms Involved. Geomicrobiology Journal, 2016, 33, 179-184.	2.0	13

#	Article	IF	CITATIONS
37	Comparison of specific adsorption capacity of different forms of fungal pellets for removal of Acid Brilliant Red B from aqueous solution and mechanisms exploration. Process Biochemistry, 2012, 47, 1197-1201.	3.7	12
38	Reductive leaching of manganese from manganese dioxide ores by bacterial-catalyzed two-ores method. International Journal of Mineral Processing, 2016, 150, 24-31.	2.6	11
39	Gallium recovery from aluminum smelting slag via a novel combined process of bioleaching and chemical methods. Hydrometallurgy, 2018, 177, 140-145.	4.3	10
40	Cell immobilization technique for biotrickle filtering of isopropyl alcohol waste vapor generated by highâ€ŧechnology industries. Journal of Chemical Technology and Biotechnology, 2013, 88, 364-371.	3.2	8
41	Synthesis of nano-sized Zn–Mn ferrite from the resulting bioleachate of obsolete Zn–Mn batteries at a high pulp density of 5.0% enhanced by the added Fe3+. Journal of Cleaner Production, 2019, 229, 299-307.	9.3	8
42	Enhanced metal bioleaching mechanisms of extracellular polymeric substance for obsolete LiNixCoyMn1-x-yO2 at high pulp density. Journal of Environmental Management, 2022, 318, 115429.	7.8	8
43	Efficient removal of As, Cu and Cd and synthesis of photo-catalyst from Cu-smelting waste acid through sulfide precipitation by biogenic gaseous H2S produced by anaerobic membrane bioreactor. Chemical Engineering Journal, 2023, 451, 138096.	12.7	8
44	Extracellular synthesis of cuprous selenide nanospheres by a biological hemical coupling reduction process in an anaerobic microbial system. Biotechnology Progress, 2016, 32, 1264-1270.	2.6	7
45	Extracellular Biosynthesis of High-Purity Î ³ -MnS by the Sulfate-Reducing Bacterium <i>Anaerofilum</i> sp. through Selective Precipitation of a Mn ²⁺ -Eriochrome Black T Chelate Complex. Geomicrobiology Journal, 2016, 33, 194-198.	2.0	6
46	Quick extracellular biosynthesis of low-cadmium ZnxCd1 \hat{a} °xS quantum dots with full-visible-region tuneable high fluorescence and its application potential assessment in cell imaging. RSC Advances, 2021, 11, 21813-21823.	3.6	6
47	Utilizing waste Zn-Mn batteries in combination with waste SCR catalyst to construct a magnetically recoverable and highly photocatalytic materials. Chemical Physics Letters, 2022, 796, 139530.	2.6	6
48	Optimization of thermal pre-treatment for simultaneous and efficient release of both Co and Mo from used Co Mo catalyst by bioleaching and their mechanisms. Hydrometallurgy, 2020, 198, 105389.	4.3	5
49	Simultaneous oxidative degradation of toxic acid wastewater from production of nitrocellulose and release of Mn ²⁺ from low-grade MnO ₂ ore as oxidant. Journal of Chemical Technology and Biotechnology, 2017, 92, 1638-1644.	3.2	4
50	Efficient and industrial production of H2SO4 from sulfur sludge by acidophilic cells in a membrane bioreactor via optimizing process. Journal of Cleaner Production, 2020, 250, 119444.	9.3	4
51	Extraction and Mechanisms of Acid Dyes Into a Room Temperature Ionic Liquid. , 2008, , .		0
52	Complete mitochondrial genome of freshwater shark <i>Wallago attu</i> (Bloch & Doch & Doch en Grown Indus River Sindh, Pakistan. Mitochondrial DNA, 2016, 27, 518-519.	0.6	0