
Lars-Gunnar Larsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/916134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nature Methods, 2006, 3, 995-1000.	19.0	2,103
2	The F-Box Protein Skp2 Participates in c-Myc Proteosomal Degradation and Acts as a Cofactor for c-Myc-Regulated Transcription. Molecular Cell, 2003, 11, 1189-1200.	9.7	441
3	c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nature Cell Biology, 2005, 7, 303-310.	10.3	421
4	Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene, 2003, 22, 351-360.	5.9	277
5	c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood, 2000, 95, 2104-2110.	1.4	244
6	The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E187-96.	7.1	226
7	Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nature Cell Biology, 2010, 12, 54-59.	10.3	218
8	The basic region/helix – loop – helix/leucine zipper domain of Myc proto-oncoproteins: Fun regulation. Oncogene, 1999, 18, 2955-2966.	ction and	179
9	Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 58-63.	7.1	167
10	Oncogene- and tumor suppressor gene-mediated suppression of cellular senescence. Seminars in Cancer Biology, 2011, 21, 367-376.	9.6	119
11	The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Experimental Cell Research, 2010, 316, 1429-1437.	2.6	89
12	A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and MYC-dependent tumor cell proliferation. Scientific Reports, 2018, 8, 10064.	3.3	85
13	<scp>CDK</scp> â€mediated activation of the <scp>SCF^{FBXO}</scp> ²⁸ ubiquitin ligase promotes <scp>MYC</scp> â€driven transcription and tumourigenesis and predicts poor survival in breast cancer. EMBO Molecular Medicine, 2013, 5, 1067-1086.	6.9	61
14	Myc Is Required for Activation of the ATM-Dependent Checkpoints in Response to DNA Damage. PLoS ONE, 2010, 5, e8924.	2.5	59
15	MYC Modulation around the CDK2/p27/SKP2 Axis. Genes, 2017, 8, 174.	2.4	58
16	Cdk2: a key regulator of the senescence control function of Myc. Aging, 2010, 2, 244-250.	3.1	47
17	Analysis of the DNA-binding activities of Myc/Max/Mad network complexes during induced differentiation of U-937 monoblasts and F9 teratocarcinoma cells. Oncogene, 1997, 15, 737-748.	5.9	38
18	The Role of Bcl-2 in the Pathogenesis of B Chronic Lymphocytic Leukemia. Leukemia and Lymphoma, 1993, 11, 173-179.	1.3	35

LARS-GUNNAR LARSSON

#	Article	IF	CITATIONS
19	Tipping the Balance: Cdk2 Enables Myc to Suppress Senescence. Cancer Research, 2010, 70, 6687-6691.	0.9	33
20	Targeting <i>MYC</i> Translation in Colorectal Cancer. Cancer Discovery, 2015, 5, 701-703.	9.4	30
21	Sin3b Interacts with Myc and Decreases Myc Levels. Journal of Biological Chemistry, 2014, 289, 22221-22236.	3.4	29
22	Implication of the ubiquitin/proteasome system in Myc-regulated transcription. Cell Cycle, 2003, 2, 403-7.	2.6	28
23	Posttranslational Regulation of Myc Function in Response to Phorbol Ester/Interferon-γ–Induced Differentiation of v-Myc–Transformed U-937 Monoblasts. Blood, 1999, 93, 3900-3912.	1.4	27
24	Interferon-? cooperates with retinoic acid and phorbol ester to induce differentiation and growth inhibition of human neuroblastoma cells. International Journal of Cancer, 2001, 94, 97-108.	5.1	26
25	TGF-Î ² enforces senescence in Myc-transformed hematopoietic tumor cells through induction of Mad1 and repression of Myc activity. Experimental Cell Research, 2009, 315, 3099-3111.	2.6	26
26	Combined IFN-Î ³ and retinoic acid treatment targets the N-Myc/Max/Mad1 network resulting in repression of N-Myc target genes in <i>MYCN</i> -amplified neuroblastoma cells. Molecular Cancer Therapeutics, 2007, 6, 2634-2641.	4.1	25
27	Drugâ€induced Mycâ€mediated apoptosis of cancer cells is inhibited by stress protein Hsp70. International Journal of Cancer, 2007, 121, 2615-2621.	5.1	24
28	Inhibition of the Intrinsic but Not the Extrinsic Apoptosis Pathway Accelerates and Drives Myc-Driven Tumorigenesis Towards Acute Myeloid Leukemia. PLoS ONE, 2012, 7, e31366.	2.5	21
29	MYC Synergizes with Activated BRAFV600E in Mouse Lung Tumor Development by Suppressing Senescence. Cancer Research, 2014, 74, 4222-4229.	0.9	15
30	PTEN and DNA-PK determine sensitivity and recovery in response to WEE1 inhibition in human breast cancer. ELife, 2020, 9, .	6.0	15
31	Characterization of A U-937 subline which can be induced to differentiate in serum-free medium. International Journal of Cancer, 1992, 50, 153-160.	5.1	13
32	MYC and RAS are unable to cooperate in overcoming cellular senescence and apoptosis in normal human fibroblasts. Cell Cycle, 2018, 17, 2697-2715.	2.6	13
33	Interferon-Î ³ -induced p27KIP1 binds to and targets MYC for proteasome-mediated degradation. Oncotarget, 2016, 7, 2837-2854.	1.8	12
34	The novel low molecular weight MYC antagonist MYCMI-6 inhibits proliferation and induces apoptosis in breast cancer cells. Investigational New Drugs, 2021, 39, 587-594.	2.6	10
35	MYC Inhibition Halts Metastatic Breast Cancer Progression by Blocking Growth, Invasion, and Seeding. Cancer Research Communications, 2022, 2, 110-130.	1.7	10
36	SNIP1: Myc's New Helper in Transcriptional Activation. Molecular Cell, 2006, 24, 811-812.	9.7	7

#	Article	IF	CITATIONS
37	Pharmacological inactivation of CDK2 inhibits MYC/BCL-XL-driven leukemia in vivo through induction of cellular senescence. Cell Cycle, 2021, 20, 23-38.	2.6	7
38	Mad 1 Inhibits Cell Growth and Proliferation but Does Not Promote Differentiation or Overall Survival in Human U-937 Monoblasts. Molecular Cancer Research, 2004, 2, 464-476.	3.4	7
39	MYCMI-7: A Small MYC-Binding Compound that Inhibits MYC: MAX Interaction and Tumor Growth in a MYC-Dependent Manner. Cancer Research Communications, 2022, 2, 182-201.	1.7	6
40	Cellular senescence—A barrier against tumor development?. Seminars in Cancer Biology, 2011, 21, 347-348.	9.6	5
41	C-Junis Induced to High Continuous Expression During Differentiation of Hematopoietic Cells and is Regulated Independently from C-Fos. Leukemia and Lymphoma, 1991, 4, 193-204.	1.3	4
42	Methods to Study Myc-Regulated Cellular Senescence: An Update. Methods in Molecular Biology, 2021, 2318, 241-254.	0.9	3
43	Novel Allosteric Mechanism of Dual p53/MDM2 and p53/MDM4 Inhibition by a Small Molecule. Frontiers in Molecular Biosciences, 2022, 9, .	3.5	3
44	Methods to Study MYC-Regulated Cellular Senescence. Methods in Molecular Biology, 2013, 1012, 99-116.	0.9	2
45	Novel Allosteric Mechanism of P53 Activation by Small Molecules for Targeted Anticancer Therapy. SSRN Electronic Journal, 0, , .	0.4	О