
Rosa Maria Borzì

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9160405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Small Extracellular Vesicles from adipose derived stromal cells significantly attenuate in vitro the NF-I®B dependent inflammatory/catabolic environment of osteoarthritis. Scientific Reports, 2021, 11, 1053.	1.6	26
2	Oxidative stress-induced DNA damage and repair in primary human osteoarthritis chondrocytes: focus on IKKα and the DNA Mismatch Repair System. Free Radical Biology and Medicine, 2021, 166, 212-225.	1.3	10
3	Basal and IL-1β enhanced chondrocyte chemotactic activity on monocytes are co-dependent on both IKKα and IKKβ NF-βB activating kinases. Scientific Reports, 2021, 11, 21697.	1.6	2
4	Pleiotropic Roles of NOTCH1 Signaling in the Loss of Maturational Arrest of Human Osteoarthritic Chondrocytes. International Journal of Molecular Sciences, 2021, 22, 12012.	1.8	7
5	Nutraceutical Activity in Osteoarthritis Biology: A Focus on the Nutrigenomic Role. Cells, 2020, 9, 1232.	1.8	29
6	Modulation of Fatty Acid-Related Genes in the Response of H9c2 Cardiac Cells to Palmitate and n-3 Polyunsaturated Fatty Acids. Cells, 2020, 9, 537.	1.8	2
7	Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. Biomolecules, 2020, 10, 340.	1.8	74
8	Spermidine rescues the deregulated autophagic response to oxidative stress of osteoarthritic chondrocytes. Free Radical Biology and Medicine, 2020, 153, 159-172.	1.3	40
9	Effect of oxidative stress and 3â€hydroxytyrosol on DNA methylation levels of miRâ€9 promoters. Journal of Cellular and Molecular Medicine, 2019, 23, 7885-7889.	1.6	10
10	The N-Acetyl Phenylalanine Glucosamine Derivative Attenuates the Inflammatory/Catabolic Environment in a Chondrocyte-Synoviocyte Co-Culture System. Scientific Reports, 2019, 9, 13603.	1.6	12
11	Polyamine supplementation reduces DNA damage in adipose stem cells cultured in 3-D. Scientific Reports, 2019, 9, 14269.	1.6	9
12	Biomaterials: Foreign Bodies or Tuners for the Immune Response?. International Journal of Molecular Sciences, 2019, 20, 636.	1.8	426
13	"Spermidine restores dysregulated autophagy and polyamine synthesis in aged and osteoarthritic chondrocytes via EP300â€. Experimental and Molecular Medicine, 2019, 51, 1-2.	3.2	4
14	Emerging Players at the Intersection of Chondrocyte Loss of Maturational Arrest, Oxidative Stress, Senescence and Low-Grade Inflammation in Osteoarthritis. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-17.	1.9	70
15	Hydroxytyrosol modulates the levels of microRNA-9 and its target sirtuin-1 thereby counteracting oxidative stress-induced chondrocyte death. Osteoarthritis and Cartilage, 2017, 25, 600-610.	0.6	46
16	Glycogen Synthase Kinase-3β Inhibition Links Mitochondrial Dysfunction, Extracellular Matrix Remodelling and Terminal Differentiation in Chondrocytes. Scientific Reports, 2017, 7, 12059.	1.6	27
17	Chondroprotective activity of N-acetyl phenylalanine glucosamine derivative on knee joint structure and inflammation in a murine model of osteoarthritis. Osteoarthritis and Cartilage, 2017, 25, 589-599.	0.6	24
18	MicroRNAs and Autophagy: Fine Players in the Control of Chondrocyte Homeostatic Activities in Osteoarthritis. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-16.	1.9	32

Rosa Maria Borzì

#	Article	IF	CITATIONS
19	Soft TCPTP Agonism—Novel Target to Rescue Airway Epithelial Integrity by Exogenous Spermidine. Frontiers in Pharmacology, 2016, 7, 147.	1.6	9
20	PKCε is a regulator of hypertrophic differentiation of chondrocytes in osteoarthritis. Osteoarthritis and Cartilage, 2016, 24, 1451-1460.	0.6	16
21	Hydroxytyrosol prevents chondrocyte death under oxidative stress by inducing autophagy through sirtuin 1-dependent and -independent mechanisms. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1181-1191.	1.1	59
22	mTOR, AMPK, and Sirt1: Key Players in Metabolic Stress Management. Critical Reviews in Eukaryotic Gene Expression, 2015, 25, 59-75.	0.4	82
23	Lithium Chloride Dependent Glycogen Synthase Kinase 3 Inactivation Links Oxidative DNA Damage, Hypertrophy and Senescence in Human Articular Chondrocytes and Reproduces Chondrocyte Phenotype of Obese Osteoarthritis Patients. PLoS ONE, 2015, 10, e0143865.	1.1	32
24	Human Osteoarthritic Cartilage Shows Reduced In Vivo Expression of IL-4, a Chondroprotective Cytokine that Differentially Modulates IL-11²-Stimulated Production of Chemokines and Matrix-Degrading Enzymes In Vitro. PLoS ONE, 2014, 9, e96925.	1.1	55
25	Hydroxytyrosol Prevents Increase of Osteoarthritis Markers in Human Chondrocytes Treated with Hydrogen Peroxide or Growth-Related Oncogene α. PLoS ONE, 2014, 9, e109724.	1.1	34
26	Cell death in human articular chondrocyte: a morpho-functional study in micromass model. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 1471-1483.	2.2	26
27	p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Research and Therapy, 2014, 16, R58.	1.6	175
28	Polyamine delivery as a tool to modulate stem cell differentiation in skeletal tissue engineering. Amino Acids, 2014, 46, 717-728.	1.2	16
29	Enhanced Osteoblastogenesis of Adipose-Derived Stem Cells on Spermine Delivery via β-Catenin Activation. Stem Cells and Development, 2013, 22, 1588-1601.	1.1	22
30	IKKα/CHUK Regulates Extracellular Matrix Remodeling Independent of Its Kinase Activity to Facilitate Articular Chondrocyte Differentiation. PLoS ONE, 2013, 8, e73024.	1.1	39
31	Role of polyamines in hypertrophy and terminal differentiation of osteoarthritic chondrocytes. Amino Acids, 2012, 42, 667-678.	1.2	21
32	Sulforaphane protects human chondrocytes against cell death induced by various stimuli. Journal of Cellular Physiology, 2011, 226, 1771-1779.	2.0	36
33	Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. , 2011, 21, 202-220.		386
34	Matrix metalloproteinase 13 loss associated with impaired extracellular matrix remodeling disrupts chondrocyte differentiation by concerted effects on multiple regulatory factors. Arthritis and Rheumatism, 2010, 62, 2370-2381.	6.7	49
35	NF-κB Signaling: Multiple Angles to Target OA. Current Drug Targets, 2010, 11, 599-613.	1.0	478
36	Sustained NFâ€̂ºB activation produces a shortâ€ŧerm cell proliferation block in conjunction with repressing effectors of cell cycle progression controlled by E2F or FoxM1. Journal of Cellular Physiology, 2009, 218, 215-227.	2.0	37

#	Article	IF	CITATIONS
37	The polyamine analogue <i>N</i> ¹ , <i>N</i> ¹¹ â€diethylnorspermine can induce chondrocyte apoptosis independently of its ability to alter metabolism and levels of natural polyamines. Journal of Cellular Physiology, 2009, 219, 109-116.	2.0	15
38	Effect of the polyamine analogue <i>N</i> ¹ , <i>N</i> ¹¹ â€diethylnorspermine on cell survival and susceptibility to apoptosis of human chondrocytes. Journal of Cellular Physiology, 2008, 216, 153-161.	2.0	6
39	Differential requirements for IKKα and IKKβ in the differentiation of primary human osteoarthritic chondrocytes. Arthritis and Rheumatism, 2008, 58, 227-239.	6.7	71
40	Chondrocyte hypertrophy and apoptosis induced by GROα require three-dimensional interaction with the extracellular matrix and a co-receptor role of chondroitin sulfate and are associated with the mitochondrial splicing variant of cathepsin B. Journal of Cellular Physiology, 2007, 210, 417-427.	2.0	50
41	Polyamine biosynthesis as a target to inhibit apoptosis of non-tumoral cells. Amino Acids, 2007, 33, 197-202.	1.2	28
42	Polyamine depletion inhibits apoptosis following blocking of survival pathways in human chondrocytes stimulated by tumor necrosis factor-α. Journal of Cellular Physiology, 2006, 206, 138-146.	2.0	32
43	Polyamine depletion inhibits NF-κB binding to DNA and interleukin-8 production in human chondrocytes stimulated by tumor necrosis factor-α. Journal of Cellular Physiology, 2005, 204, 956-963.	2.0	23
44	Cell and matrix morpho-functional analysis in chondrocyte micromasses. Microscopy Research and Technique, 2005, 67, 286-295.	1.2	26
45	Induction of ornithine decarboxylase in T/C-28a2 chondrocytes by lysophosphatidic acid: Signaling pathway and inhibition of cell proliferation. FEBS Letters, 2005, 579, 2919-2925.	1.3	11
46	A role for chemokines in the induction of chondrocyte phenotype modulation. Arthritis and Rheumatism, 2004, 50, 112-122.	6.7	67
47	Chemokines in Cartilage Degradation. Clinical Orthopaedics and Related Research, 2004, 427, S53-S61.	0.7	76
48	Production of the chemokine RANTES by articular chondrocytes and its role in cartilage degradation: Comment on the article by Alaaeddine et al. Arthritis and Rheumatism, 2003, 48, 278-278.	6.7	1
49	Down-modulation of chemokine receptor cartilage expression in inflammatory arthritis. British Journal of Rheumatology, 2003, 42, 14-18.	2.5	13
50	Growth-related oncogene ? induction of apoptosis in osteoarthritis chondrocytes. Arthritis and Rheumatism, 2002, 46, 3201-3211.	6.7	38
51	Human chondrocytes express functional chemokine receptors and release matrix-degrading enzymes in response to C-X-C and C-C chemokines. Arthritis and Rheumatism, 2000, 43, 1734-1741.	6.7	142
52	Flow cytometric analysis of intracellular chemokines in chondrocytes in vivo: constitutive expression and enhancement in osteoarthritis and rheumatoid arthritis. FEBS Letters, 1999, 455, 238-242.	1.3	89
53	Enhanced and coordinated in vivo expression of inflammatory cytokines and nitric oxide synthase by chondrocytes from patients with osteoarthritis. Arthritis and Rheumatism, 1998, 41, 2165-2174.	6.7	243
54	Mapping of topoisomerase II α epitopes recognized by autoantibodies in idiopathic pulmonary fibrosis. Clinical and Experimental Immunology, 1998, 114, 339-346.	1.1	22

Rosa Maria Borzì

#	Article	IF	CITATIONS
55	A fluorescent in situ hybridization method in flow cytometry to detect HIV-1 specific RNA. Journal of Immunological Methods, 1996, 193, 167-176.	0.6	24
56	Serum copper/zinc superoxide dismutase levels in patients with rheumatoid arthritis. International Journal of Clinical and Laboratory Research, 1996, 26, 245-249.	1.0	41
57	Superoxide Dismutases in Idiopathic Pulmonary Fibrosis. Clinical Science, 1995, 88, 371-371.	1.8	1
58	Comparison of different methods for the detection of autoantibodies in autoimmune diseases. International Journal of Clinical and Laboratory Research, 1995, 25, 205-210.	1.0	4
59	Intracellular Cu/Zn superoxide dismutase levels in T and non-T cells from normal aged subjects. Mechanisms of Ageing and Development, 1994, 73, 27-37.	2.2	12
60	Antibodies to topoisomerase II in idiopathic pulmonary fibrosis. Clinical Rheumatology, 1993, 12, 311-315.	1.0	13
61	Elevated Serum Superoxide Dismutase Levels Correlate with Disease Severity and Neutrophil Degranulation in Idiopathic Pulmonary Fibrosis. Clinical Science, 1993, 85, 353-359.	1.8	23
62	Intracellular nucleotides of lymphocytes and granulocytes from normal ageing subjects. Mechanisms of Ageing and Development, 1992, 64, 1-11.	2.2	9
63	IgG subclass distribution of anti-HBs antibodies following vaccination with cDNA HBsAg. Journal of Immunological Methods, 1992, 146, 17-23.	0.6	17
64	Detection of Circulating Autoantibodies to Poly(ADP-Ribose)Polymerase in Autoimmune Diseases. Annals of the New York Academy of Sciences, 1992, 663, 508-509.	1.8	0
65	Idiopathic pulmonary fibrosis: can cell mediated immunity markers predict clinical outcome?. Thorax, 1990, 45, 536-540.	2.7	18
66	Autoantibodies to Poly(ADP-Ribose)Polymerase in Autoimmune Diseases. Autoimmunity, 1990, 6, 203-209.	1.2	26