
Da-Wei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9160217/publications.pdf Version: 2024-02-01

DA-MELLI

#	Article	IF	CITATIONS
1	Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation. Cell, 2008, 133, 128-141.	28.9	712
2	Validation of Reference Genes for Gene Expression Studies in Virus-Infected Nicotiana benthamiana Using Quantitative Real-Time PCR. PLoS ONE, 2012, 7, e46451.	2.5	337
3	Mechanisms of Conformational Change for a Replicative Hexameric Helicase of SV40 Large Tumor Antigen. Cell, 2004, 119, 47-60.	28.9	291
4	Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature, 2003, 423, 512-518.	27.8	278
5	A High Throughput Barley Stripe Mosaic Virus Vector for Virus Induced Gene Silencing in Monocots and Dicots. PLoS ONE, 2011, 6, e26468.	2.5	253
6	Temperature-Dependent Survival of Turnip Crinkle Virus-Infected Arabidopsis Plants Relies on an RNA Silencing-Based Defense That Requires DCL2, AGO2, and HEN1. Journal of Virology, 2012, 86, 6847-6854.	3.4	168
7	Structure of Complement Receptor 2 in Complex with Its C3d Ligand. Science, 2001, 292, 1725-1728.	12.6	148
8	ICTV Virus Taxonomy Profile: Virgaviridae. Journal of General Virology, 2017, 98, 1999-2000.	2.9	134
9	<i>Barley stripe mosaic virus</i> î³b Protein Subverts Autophagy to Promote Viral Infection by Disrupting the ATG7-ATG8 Interaction. Plant Cell, 2018, 30, 1582-1595.	6.6	114
10	Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease. Virus Genes, 2003, 27, 163-168.	1.6	107
11	A barley stripe mosaic virusâ€based guide RNA delivery system for targeted mutagenesis in wheat and maize. Molecular Plant Pathology, 2019, 20, 1463-1474.	4.2	91
12	Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Molecular Plant, 2021, 14, 1787-1798.	8.3	85
13	Wheat yellow mosaic virus Widely Occurring in Wheat (Triticum aestivum) in China. Plant Disease, 2000, 84, 627-630.	1.4	79
14	Identification of rice black-streaked dwarf fijivirus in maize with rough dwarf disease in China. Archives of Virology, 2001, 146, 167-170.	2.1	78
15	Fine Mapping of the Bsr1 Barley Stripe Mosaic Virus Resistance Gene in the Model Grass Brachypodium distachyon. PLoS ONE, 2012, 7, e38333.	2.5	67
16	The Barley stripe mosaic virus Î ³ b protein promotes chloroplast-targeted replication by enhancing unwinding of RNA duplexes. PLoS Pathogens, 2017, 13, e1006319.	4.7	65
17	Three-Dimensional Analysis of Chloroplast Structures Associated with Virus Infection. Plant Physiology, 2018, 176, 282-294.	4.8	62
18	Risk factors for new onset diabetes mellitus after liver transplantation: A meta-analysis. World Journal of Gastroenterology, 2015, 21, 6329.	3.3	56

#	Article	IF	CITATIONS
19	Morphogenesis of Endoplasmic Reticulum Membrane-Invaginated Vesicles during Beet Black Scorch Virus Infection: Role of Auxiliary Replication Protein and New Implications of Three-Dimensional Architecture. Journal of Virology, 2015, 89, 6184-6195.	3.4	56
20	Complete sequence analysis reveals two distinct poleroviruses infecting cucurbits in China. Archives of Virology, 2008, 153, 1155-1160.	2.1	53
21	Molecular characterization of two genotypes of a new polerovirus infecting brassicas in China. Archives of Virology, 2011, 156, 2251-2255.	2.1	47
22	Amino Acid Sequence Motifs Essential for PO-Mediated Suppression of RNA Silencing in an Isolate of <i>Potato leafroll virus</i> from Inner Mongolia. Molecular Plant-Microbe Interactions, 2014, 27, 515-527.	2.6	47
23	Barley Stripe Mosaic Virus Î ³ b Interacts with Glycolate Oxidase and Inhibits Peroxisomal ROS Production to Facilitate Virus Infection. Molecular Plant, 2018, 11, 338-341.	8.3	46
24	Phosphorylation of TGB1 by protein kinase CK2 promotes barley stripe mosaic virus movement in monocots and dicots. Journal of Experimental Botany, 2015, 66, 4733-4747.	4.8	44
25	Insights into the Oligomeric States, Conformational Changes, and Helicase Activities of SV40 Large Tumor Antigen. Journal of Biological Chemistry, 2004, 279, 38952-38959.	3.4	43
26	Overexpression of hepatocyte nuclear factor 4α in human mesenchymal stem cells suppresses hepatocellular carcinoma development through Wnt/β-catenin signaling pathway downregulation. Cancer Biology and Therapy, 2016, 17, 558-565.	3.4	43
27	A self-perpetuating repressive state of a viral replication protein blocks superinfection by the same virus. PLoS Pathogens, 2017, 13, e1006253.	4.7	42
28	Hijacking of the nucleolar protein fibrillarin by TGB1 is required for cellâ€ŧo ell movement of <i>Barley stripe mosaic virus</i> . Molecular Plant Pathology, 2018, 19, 1222-1237.	4.2	41
29	Identification of the Potential Virulence Factors and RNA Silencing Suppressors of Mulberry Mosaic Dwarf-Associated Geminivirus. Viruses, 2018, 10, 472.	3.3	41
30	Interaction between Brassica yellows virus silencing suppressor PO and plant SKP1 facilitates stability of PO <i>inÂvivo</i> against degradation by proteasome and autophagy pathways. New Phytologist, 2019, 222, 1458-1473.	7.3	41
31	<i>>Barley stripe mosaic virus</i> infection requires PKAâ€mediated phosphorylation of γb for suppression of both RNA silencing and the host cell death response. New Phytologist, 2018, 218, 1570-1585.	7.3	40
32	Distribution and molecular diversity of three cucurbit-infecting poleroviruses in China. Virus Research, 2009, 145, 341-346.	2.2	39
33	Rice black-streaked dwarf virus P6 self-interacts to form punctate, viroplasm-like structures in the cytoplasm and recruits viroplasm-associated protein P9-1. Virology Journal, 2011, 8, 24.	3.4	37
34	Synergistic infection of BrYV and PEMV 2 increases the accumulations of both BrYV and BrYV-derived siRNAs in Nicotiana benthamiana. Scientific Reports, 2017, 7, 45132.	3.3	36
35	Proximity labeling: an emerging tool for probing inÂplanta molecular interactions. Plant Communications, 2021, 2, 100137.	7.7	36
36	Rapid detection of wheat yellow mosaic virus by reverse transcription loop-mediated isothermal amplification. Virology Journal, 2011, 8, 550.	3.4	34

#	Article	IF	CITATIONS
37	Brachypodium distachyon line Bd3-1 resistance is elicited by the barley stripe mosaic virus triple gene block 1 movement protein. Journal of General Virology, 2012, 93, 2729-2739.	2.9	33
38	Selection of reference genes for gene expression studies in virus-infected monocots using quantitative real-time PCR. Journal of Biotechnology, 2013, 168, 7-14.	3.8	33
39	Two amino acids near the <scp>N</scp> â€ŧerminus of <i>Cucumber mosaic virus</i> 2b play critical roles in the suppression of <scp>RNA</scp> silencing and viral infectivity. Molecular Plant Pathology, 2016, 17, 173-183.	4.2	33
40	Development of an ID-ELISA for the detection of Rice black-streaked dwarf virus in plants. Journal of Virological Methods, 2006, 134, 61-65.	2.1	32
41	Ring structure amino acids affect the suppressor activity of melon aphid-borne yellows virus PO protein. Virology, 2010, 406, 21-27.	2.4	31
42	Analysis of the subgenomic RNAs and the small open reading frames of Beet black scorch virus. Journal of General Virology, 2006, 87, 3077-3086.	2.9	30
43	Nonstructural protein P7-2 encoded by Rice black-streaked dwarf virus interacts with SKP1, a core subunit of SCF ubiquitin ligase. Virology Journal, 2013, 10, 325.	3.4	30
44	Oral administration of plant-based rotavirus VP6 induces antigen-specific IgAs, IgGs and passive protection in mice. Vaccine, 2010, 28, 6021-6027.	3.8	29
45	Complete genome sequence analysis identifies a new genotype of brassica yellows virus that infects cabbage and radish in China. Archives of Virology, 2014, 159, 2177-2180.	2.1	29
46	The complete nucleotide sequence of Beet black scorch virus (BBSV), a new member of the genus Necrovirus. Archives of Virology, 2002, 147, 2431-2435.	2.1	28
47	Development of <i>Tobacco necrosis virus A</i> as a vector for efficient and stable expression of FMDV VP1 peptides. Plant Biotechnology Journal, 2010, 8, 506-523.	8.3	28
48	Efficient and fine mapping of RMES1 conferring resistance to sorghum aphid Melanaphis sacchari. Molecular Breeding, 2013, 31, 777-784.	2.1	28
49	Discovery and Characterization of a Novel Carlavirus Infecting Potatoes in China. PLoS ONE, 2013, 8, e69255.	2.5	28
50	Rice black streaked dwarf virus P7-2 forms a SCF complex through binding to Oryza sativa SKP1-like proteins, and interacts with GID2 involved in the gibberellin pathway. PLoS ONE, 2017, 12, e0177518.	2.5	28
51	<i>Barley stripe mosaic virus</i> γb protein disrupts chloroplast antioxidant defenses to optimize viral replication. EMBO Journal, 2021, 40, e107660.	7.8	27
52	Coat proteins of necroviruses target 14-3-3a to subvert MAPKKKα-mediated antiviral immunity in plants. Nature Communications, 2022, 13, 716.	12.8	27
53	Analysis of Nucleotide Sequences and Multimeric Forms of a Novel Satellite RNA Associated with Beet Black Scorch Virus. Journal of Virology, 2005, 79, 3664-3674.	3.4	26
54	Nuclear localization of Beet black scorch virus capsid protein and its interaction with importin α. Virus Research, 2011, 155, 307-315.	2.2	26

#	Article	IF	CITATIONS
55	Deep Sequencing–Based Transcriptome Profiling Reveals Comprehensive Insights into the Responses of Nicotiana benthamiana to Beet necrotic yellow vein virus Infections Containing or Lacking RNA4. PLoS ONE, 2014, 9, e85284.	2.5	26
56	Phosphorylation of Beet black scorch virus coat protein by PKA is required for assembly and stability of virus particles. Scientific Reports, 2015, 5, 11585.	3.3	26
57	First Report of <i>Barley yellow striate mosaic virus</i> on Wheat in China. Plant Disease, 2014, 98, 1450-1450.	1.4	26
58	Development of three full-length infectious cDNA clones of distinct brassica yellows virus genotypes for agrobacterium-mediated inoculation. Virus Research, 2015, 197, 13-16.	2.2	25
59	Random Plant Viral Variants Attain Temporal Advantages During Systemic Infections and in Turn Resist other Variants of the Same Virus. Scientific Reports, 2015, 5, 15346.	3.3	24
60	First report on the occurrence of Cucurbit aphid-borne yellows virus on nine cucurbitaceous species in China. Plant Pathology, 2008, 57, 390-390.	2.4	22
61	Brassica yellows virus P0 protein impairs the antiviral activity of NbRAF2 in Nicotiana benthamiana. Journal of Experimental Botany, 2018, 69, 3127-3139.	4.8	22
62	The Barley stripe mosaic virus γb protein promotes viral cell-to-cell movement by enhancing ATPase-mediated assembly of ribonucleoprotein movement complexes. PLoS Pathogens, 2020, 16, e1008709.	4.7	22
63	Two virus-encoded RNA silencing suppressors, P14 ofBeet necrotic yellow vein virus and S6 ofRice black streak dwarf virus. Science Bulletin, 2005, 50, 305-310.	1.7	21
64	Phylogenetic analysis of Beet necrotic yellow vein virus isolates from China. Virus Genes, 2008, 36, 429-432.	1.6	21
65	Host casein kinase 1-mediated phosphorylation modulates phase separation of a rhabdovirus phosphoprotein and virus infection. ELife, 2022, 11, .	6.0	21
66	N-terminal basic amino acid residues of Beet black scorch virus capsid protein play a critical role in virion assembly and systemic movement. Virology Journal, 2013, 10, 200.	3.4	20
67	CCR4, a RNA decay factor, is hijacked by a plant cytorhabdovirus phosphoprotein to facilitate virus replication. ELife, 2020, 9, .	6.0	20
68	Complete nucleotide sequence of a new strain of Tobacco necrosis virus A infecting soybean in China and infectivity of its full-length cDNA clone. Virus Genes, 2008, 36, 259-266.	1.6	19
69	Infection of Beet necrotic yellow vein virus with RNA4-encoded P31 specifically up-regulates pathogenesis-related protein 10 in Nicotiana benthamiana. Virology Journal, 2014, 11, 118.	3.4	19
70	Brassica yellows virus' movement protein upregulates anthocyanin accumulation, leading to the development of purple leaf symptoms on Arabidopsis thaliana. Scientific Reports, 2018, 8, 16273.	3.3	19
71	The serine/threonine/tyrosine kinase STY46 defends against hordeivirus infection by phosphorylating γb protein. Plant Physiology, 2021, 186, 715-730.	4.8	19
72	Hsc70-2 is required for Beet black scorch virus infection through interaction with replication and capsid proteins. Scientific Reports, 2018, 8, 4526.	3.3	18

#	Article	IF	CITATIONS
73	Genome-Wide microRNA Profiling Using Oligonucleotide Microarray Reveals Regulatory Networks of microRNAs in Nicotiana benthamiana During Beet Necrotic Yellow Vein Virus Infection. Viruses, 2020, 12, 310.	3.3	18
74	Enhanced Virus Resistance in Transgenic Maize Expressing a dsRNA-Specific Endoribonuclease Gene from E. coli. PLoS ONE, 2013, 8, e60829.	2.5	17
75	Simultaneous detection and differentiation of three genotypes of Brassica yellows virus by multiplex reverse transcription-polymerase chain reaction. Virology Journal, 2016, 13, 189.	3.4	17
76	Using porphyritic andesite as a new additive for improving hydrolysis and acidogenesis of solid organic wastes. Bioresource Technology, 2009, 100, 5594-5599.	9.6	16
77	Complete genomic sequence analysis reveals a novel fabavirus infecting cucurbits in China. Archives of Virology, 2012, 157, 597-600.	2.1	16
78	The Conserved Proline18 in the Polerovirus P3a Is Important for Brassica Yellows Virus Systemic Infection. Frontiers in Microbiology, 2018, 9, 613.	3.5	16
79	The R-rich motif of Beet black scorch virus P7a movement protein is important for the nuclear localization, nucleolar targeting and viral infectivity. Virus Research, 2012, 167, 207-218.	2.2	15
80	A viral protein disrupts vacuolar acidification to facilitate virus infection in plants. EMBO Journal, 2022, 41, e108713.	7.8	15
81	Threeâ€dimensional reconstruction and comparison of vacuolar membranes in response to viral infection. Journal of Integrative Plant Biology, 2021, 63, 353-364.	8.5	14
82	Improved Pathogenicity of a Beet Black Scorch Virus Variant by Low Temperature and Co-infection with Its Satellite RNA. Frontiers in Microbiology, 2016, 7, 1771.	3.5	13
83	The Three Essential Motifs in PO for Suppression of RNA Silencing Activity of Potato leafroll virus Are Required for Virus Systemic Infection. Viruses, 2019, 11, 170.	3.3	12
84	Analysis of nucleotide sequence of wheat yellow mosaic virus genomic RNAs. Science in China Series C: Life Sciences, 1999, 42, 554-560.	1.3	11
85	Transcriptome Analysis of Beta macrocarpa and Identification of Differentially Expressed Transcripts in Response to Beet Necrotic Yellow Vein Virus Infection. PLoS ONE, 2015, 10, e0132277.	2.5	11
86	Induction of heat shock protein 27 by bicyclol attenuates d-galactosamine/lipopolysaccharide-induced liver injury. European Journal of Pharmacology, 2016, 791, 482-490.	3.5	11
87	Tobacco Necrosis Virus-A ^C Single Coat Protein Amino Acid Substitutions Determine Host-Specific Systemic Infections of <i>Nicotiana benthamiana</i> and Soybean. Molecular Plant-Microbe Interactions, 2021, 34, 49-61.	2.6	11
88	First Report of Potato Virus H on Solanum muricatum in China. Plant Disease, 2014, 98, 1016-1016.	1.4	11
89	Detection and characterization of spontaneous internal deletion mutants of Beet Necrotic yellow vein virus RNA3 from systemic host Nicotiana benthamiana. Virology Journal, 2011, 8, 335.	3.4	10
90	A novel strain of Beet western yellows virus infecting sugar beet with two distinct genotypes differing in the 5′-terminal half of genome. Virus Genes, 2011, 42, 141-149.	1.6	10

#	Article	IF	CITATIONS
91	Two distinct sites are essential for virulent infection and support of variant satellite RNA replication in spontaneous beet black scorch virus variants. Journal of General Virology, 2012, 93, 2718-2728.	2.9	10
92	Construction of infectious clones of lychnis ringspot virus and evaluation of its relationship with barley stripe mosaic virus by reassortment of genomic RNA segments. Virus Research, 2018, 243, 106-109.	2.2	10
93	SAMDC3 enhances resistance to <i>Barley stripe mosaic virus</i> by promoting the ubiquitination and proteasomal degradation of viral γb protein. New Phytologist, 2022, 234, 618-633.	7.3	10
94	Incidence and prevalence levels of three aphid-transmitted viruses in crucifer crops in China. Journal of Integrative Agriculture, 2022, 21, 774-780.	3.5	10
95	Construction of an Infectious <i>Poa semilatent virus</i> cDNA Clone and Comparisons of Hordeivirus Cytopathology and Pathogenicity. Phytopathology, 2020, 110, 215-227.	2.2	9
96	Hordeiviruses (Virgaviridae). , 2021, , 420-429.		9
97	The nucleotide sequence of a Chinese isolate of wheat yellow mosaic virus and its comparison with a Japanese isolate. Archives of Virology, 1999, 144, 2201-2206.	2.1	8
98	Effects on the local symptoms of subgenomic RNAs expressions and their translational products of Tobacco necrosis virus A Chinese isolate. Science Bulletin, 2008, 53, 1682-1690.	9.0	7
99	Characterization of microRNAs of Beta macrocarpa and their responses to Beet necrotic yellow vein virus infection. PLoS ONE, 2017, 12, e0186500.	2.5	7
100	Barley stripe mosaic virus γb protein targets thioredoxin h-type 1 to dampen salicylic acid-mediated defenses. Plant Physiology, 2022, 189, 1715-1727.	4.8	7
101	Molecular characterization of two Chinese isolates of Beet mosaic virus. Virus Genes, 2007, 35, 795-799.	1.6	6
102	Molecular characterization of two Chinese isolates of Beet western yellows virus infecting sugar beet. Virus Genes, 2010, 41, 105-110.	1.6	6
103	Nucleotide sequence of a chickpea chlorotic stunt virus relative that infects pea and faba bean in China. Archives of Virology, 2012, 157, 1393-1396.	2.1	6
104	Functional Characterization of RNA Silencing Suppressor P0 from Pea Mild Chlorosis Virus. International Journal of Molecular Sciences, 2020, 21, 7136.	4.1	6
105	First identification of Beet western yellows virus on sugarbeet and lettuce in China. Plant Pathology, 2008, 57, 390-390.	2.4	5
106	First report of Beet soil-borne virus on sugar beet in China. Plant Pathology, 2008, 57, 389-389.	2.4	5
107	Production of Antiserum to Recombinant Coat Protein for Detecting <i>Lily mottle virus</i> in Yunnan, China. Journal of Phytopathology, 2009, 157, 362-369.	1.0	5
108	Development of polyclonal antiserum against movement protein from Potato leafroll virus and its application for the virus detection. Phytopathology Research, 2019, 1, .	2.4	5

#	Article	IF	CITATIONS
109	<i>Trichosanthes kirilowii</i> : A New Host of Cucurbit mild mosaic virus in China. Plant Disease, 2013, 97, 1388-1388.	1.4	5
110	Identification of an Internal RNA Element Essential for Replication and Translational Enhancement of Tobacco Necrosis Virus AC. PLoS ONE, 2013, 8, e57938.	2.5	5
111	The Complete Genome Sequence of Southern rice black-streaked dwarf virus Isolated from Vietnam. Plant Pathology Journal, 2012, 28, 428-432.	1.7	5
112	Plant virus infection disrupts vacuolar acidification and autophagic degradation for the effective infection. Autophagy, 2022, 18, 705-706.	9.1	5
113	A Powerful Method for Studying Protein–Protein Interactions in Plants: Coimmunoprecipitation (Co-IP) Assay. Methods in Molecular Biology, 2022, 2400, 87-92.	0.9	5
114	Incomplete DRB4-dependence of the DCL4-mediated antiviral defense. Scientific Reports, 2016, 6, 39244.	3.3	4
115	RNA-seq analysis of Brachypodium distachyon responses to Barley stripe mosaic virus infection. Crop Journal, 2017, 5, 1-10.	5.2	4
116	First Report of Cucurbit Aphid-Borne Yellows Virus in Passion Fruit Plants Exhibiting Mosaic and Mottling in China. Plant Disease, 2020, 104, 601-601.	1.4	4
117	A Simple Method for the Acquisition and Transmission of Brassica Yellows Virus from Transgenic Plants and Frozen Infected Leaves by Aphids. Plants, 2021, 10, 1944.	3.5	4
118	Architecture of viral replication factories. Oncotarget, 2015, 6, 30439-30440.	1.8	4
119	Contrast-enhanced micro-computed tomography using ExiTron nano6000 for assessment of liver injury. World Journal of Gastroenterology, 2015, 21, 8043.	3.3	4
120	Over-expression of 72 ku protein of wheat yellow mosaic virus inE. coli and preparation of its antiserum. Science Bulletin, 2000, 45, 525-528.	1.7	3
121	Two virus-encoded RNA si-lencing suppressors, P14 of Beet necrotic yellow vein virus and S6 of Rice black streak dwarf virus. Science Bulletin, 2005, 50, 305.	1.7	3
122	Creation of trivalent transgenic watermelon resistant to virus infection. Chinese Journal of Agricultural Biotechnology, 2005, 2, 179-185.	0.1	3
123	Complete Genome Sequences of Two Chinese <i>Beet soilâ€borne virus</i> Isolates Provide Evidence that the Genome is Highly Conserved. Journal of Phytopathology, 2008, 156, 487-488.	1.0	3
124	Palmitoylation of γb protein directs a dynamic switch between <i>Barley stripe mosaic virus</i> replication and movement. EMBO Journal, 2022, 41, .	7.8	3
125	Functional analysis of beet necrotic yellow vein virus (BNYVV) RNA4 in fungal transmission. Science Bulletin, 2002, 47, 1281.	1.7	2
			_

 $\frac{126}{126}$ Genome-Wide and Comprehensive Analysis of the Multiple Stress-Related CAF1 (CCR4-Associated Factor) Tj ETQqQQQ0 rgBT $\frac{1}{2}$ Overlock 1

#	Article	IF	CITATIONS
127	Development and Optimization of <l>Tobacco necrosis virus A</l> Induced Gene Silencing in <l>Nicotiana benthamiana</l> *. Progress in Biochemistry and Biophysics, 2011, 38, 919-928.	0.3	2
128	Comparative Analysis of Biological Characteristics among P0 Proteins from Different Brassica Yellows Virus Genotypes. Biology, 2021, 10, 1076.	2.8	2
129	Development of polyclonal antisera against movement proteins from three poleroviruses infecting cucurbits. Phytopathology Research, 2020, 2, .	2.4	1
130	Rapid Detection and Differentiation of Three Cucurbit-infecting Poleroviruses by Multiplex RT–PCR. Journal of Agricultural Science, 2012, 4, .	0.2	1
131	The Carboxyl Terminal Regions of PO Protein Are Required for Systemic Infections of Poleroviruses. International Journal of Molecular Sciences, 2022, 23, 1945.	4.1	1
132	Studies on interaction of cucurbit aphid-borne yellow virus proteins using yeast two-hybrid system and bimolecular fluorescence complementation. Acta Virologica, 2011, 55, 235-241.	0.8	0
133	Effect of the RNA5 component on pathogenicity of beet ne-crotic yellow vein virus. Science Bulletin, 2003, 48, 796.	1.7	Ο