
## Luis A Teixeira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9159711/publications.pdf Version: 2024-02-01



LIUS A TEIVEIDA

| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Differential activation of the plantar flexor muscles in balance control across different feet orientations on the ground. Journal of Electromyography and Kinesiology, 2022, 62, 102625.                                                                                                 | 1.7 | 1         |
| 2  | Single Leg Balance Training: A Systematic Review. Perceptual and Motor Skills, 2022, 129, 232-252.                                                                                                                                                                                        | 1.3 | 10        |
| 3  | A Public Data Set of Videos, Inertial Measurement Unit, and Clinical Scales of Freezing of Gait in<br>Individuals With Parkinson's Disease During a Turning-In-Place Task. Frontiers in Neuroscience, 2022,<br>16, 832463.                                                                | 2.8 | 7         |
| 4  | Judokas Show Increased Resilience to Unpredictable Stance Perturbations. Perceptual and Motor Skills, 2022, 129, 513-527.                                                                                                                                                                 | 1.3 | 1         |
| 5  | Reply from Jumes Leopoldino Oliveira Lira, Carlos Ugrinowitsch, Daniel Boari Coelho, Luis Augusto<br>Teixeira, Andrea Cristina de Limaâ€Pardini, Fernando Henrique Magalhães, Egberto Reis Barbosa, Fay B.<br>Horak, and Carla Silvaâ€Batista. Journal of Physiology, 2022, 600, 421-422. | 2.9 | 0         |
| 6  | Between-leg asymmetry in automatic postural responses to stance perturbations in people with<br>Parkinson's disease. Gait and Posture, 2022, , .                                                                                                                                          | 1.4 | 0         |
| 7  | ls freezing of gait correlated with postural control in patients with moderateâ€ŧoâ€severe Parkinson's<br>disease?. European Journal of Neuroscience, 2021, 53, 1189-1196.                                                                                                                | 2.6 | 5         |
| 8  | Associations Between Women's Obesity Status and Diminished Cutaneous Sensibility Across Foot Sole<br>Regions. Perceptual and Motor Skills, 2021, 128, 243-257.                                                                                                                            | 1.3 | 1         |
| 9  | Compensatory control between the legs in automatic postural responses to stance perturbations under single-leg fatigue. Experimental Brain Research, 2021, 239, 639-653.                                                                                                                  | 1.5 | 5         |
| 10 | Age-Related Changes in Presynaptic Inhibition During Gait Initiation. Journals of Gerontology - Series A<br>Biological Sciences and Medical Sciences, 2021, 76, 568-575.                                                                                                                  | 3.6 | 5         |
| 11 | Preserved flexibility of dynamic postural control in individuals with Parkinson's disease. Gait and Posture, 2021, 86, 240-244.                                                                                                                                                           | 1.4 | 2         |
| 12 | Vigor of reactive postural responses is set from feedback and feedforward processes. Behavioral and<br>Brain Sciences, 2021, 44, e134.                                                                                                                                                    | 0.7 | 0         |
| 13 | Association of Foot Sole Sensibility with Quiet and Dynamic Body Balance in Morbidly Obese Women.<br>Biomechanics, 2021, 1, 334-345.                                                                                                                                                      | 1.2 | 1         |
| 14 | Instantaneous interjoint rescaling and adaptation to balance perturbation under muscular fatigue.<br>European Journal of Neuroscience, 2020, 51, 1478-1490.                                                                                                                               | 2.6 | 7         |
| 15 | Automatic postural responses are scaled from the association between online feedback and feedforward control. European Journal of Neuroscience, 2020, 51, 2023-2032.                                                                                                                      | 2.6 | 18        |
| 16 | Brain networks associated with anticipatory postural adjustments in Parkinson's disease patients<br>with freezing of gait. NeuroImage: Clinical, 2020, 28, 102461.                                                                                                                        | 2.7 | 10        |
| 17 | Are the Predictions of the Dynamic Dominance Model of Laterality Applicable to Children?.<br>Developmental Neuropsychology, 2020, 45, 496-505.                                                                                                                                            | 1.4 | 3         |
| 18 | Asymmetric interlateral transfer of motor learning in unipedal dynamic balance. Experimental Brain<br>Research, 2020, 238, 2745-2751.                                                                                                                                                     | 1.5 | 9         |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Randomized, Controlled Trial of Exercise for Parkinsonian Individuals With Freezing of Gait.<br>Movement Disorders, 2020, 35, 1607-1617.                                                                                            | 3.9 | 39        |
| 20 | High contextual interference in perturbation-based balance training leads to persistent and<br>generalizable stability gains of compensatory limb movements. Experimental Brain Research, 2020, 238,<br>1249-1263.                    | 1.5 | 13        |
| 21 | Are the predictions of the dynamic dominance model of laterality applicable to the lower limbs?.<br>Human Movement Science, 2020, 73, 102684.                                                                                         | 1.4 | 9         |
| 22 | Loss of presynaptic inhibition for step initiation in parkinsonian individuals with freezing of gait.<br>Journal of Physiology, 2020, 598, 1611-1624.                                                                                 | 2.9 | 21        |
| 23 | Is standing sway an accurate measure of fall risk and predictor of future falls in older adults?.<br>Brazilian Journal of Motor Behavior, 2020, 14, 1-3.                                                                              | 0.5 | 1         |
| 24 | Efeito de previsibilidade temporal de perturbações posturais e demanda de precisão de tarefa manual<br>no desempenho em tarefa dual. Revista Brasileira De Educação FÃsica E Esporte: RBEFE, 2020, 34, 295-304.                       | 0.1 | 0         |
| 25 | Do older adults have impaired stability control during adaptive gait?. Brazilian Journal of Motor<br>Behavior, 2020, 14, 50-52.                                                                                                       | 0.5 | 1         |
| 26 | Which mechanisms underlie sensorimotor adaptations to perturbation-based balance training?.<br>Brazilian Journal of Motor Behavior, 2020, 14, 94-96.                                                                                  | 0.5 | 1         |
| 27 | Feasibility of evaluating effects of muscle fatigue on postural stability and muscular activation of the supporting leg in the soccer power kicking. Brazilian Journal of Motor Behavior, 2020, 13, 144-154.                          | 0.5 | 0         |
| 28 | Deep Brain Stimulation in Patients with Isolated Generalized Dystonia Caused by <i>PRKRA</i> Mutation. Movement Disorders Clinical Practice, 2019, 6, 616-618.                                                                        | 1.5 | 6         |
| 29 | Evaluation of balance recovery stability from unpredictable perturbations through the compensatory arm and leg movements (CALM) scale. PLoS ONE, 2019, 14, e0221398.                                                                  | 2.5 | 11        |
| 30 | Right in Comparison to Left Cerebral Hemisphere Damage by Stroke Induces Poorer Muscular<br>Responses to Stance Perturbation Regardless of Visual Information. Journal of Stroke and<br>Cerebrovascular Diseases, 2019, 28, 954-962.  | 1.6 | 18        |
| 31 | Light touch leads to increased stability in quiet and perturbed balance: Equivalent effects between post-stroke and healthy older individuals. Human Movement Science, 2018, 58, 268-278.                                             | 1.4 | 4         |
| 32 | Improvement of Balance Stability in Older Individuals by On-Water Training. Journal of Aging and Physical Activity, 2018, 26, 222-226.                                                                                                | 1.0 | 8         |
| 33 | Right cerebral hemisphere specialization for quiet and perturbed body balance control: Evidence from<br>unilateral stroke. Human Movement Science, 2018, 57, 374-387.                                                                 | 1.4 | 30        |
| 34 | Efeito da associação de prática imagética e fÃsica na aprendizagem motora em crianças. Revista<br>Brasileira De Cineantropometria E Desempenho Humano, 2018, 20, 363-372.                                                             | 0.5 | 3         |
| 35 | Effects of spinal cord stimulation on postural control in Parkinson's disease patients with freezing of gait. ELife, 2018, 7, .                                                                                                       | 6.0 | 38        |
| 36 | Young and older adults adapt automatic postural responses equivalently to repetitive perturbations<br>but are unable to use predictive cueing to optimize recovery of balance stability. Neuroscience Letters,<br>2018, 685, 167-172. | 2.1 | 5         |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Disambiguating the cognitive and adaptive effects of contextual cues of an impending balance perturbation. Human Movement Science, 2018, 61, 90-98.                                               | 1.4 | 11        |
| 38 | Regulation of dynamic postural control to attend manual steadiness constraints. Journal of Neurophysiology, 2018, 120, 693-702.                                                                   | 1.8 | 6         |
| 39 | Cognition and balance control: does processing of explicit contextual cues of impending perturbations modulate automatic postural responses?. Experimental Brain Research, 2017, 235, 2375-2390.  | 1.5 | 20        |
| 40 | Measuring cortical motor hemodynamics during assisted stepping – An fNIRS feasibility study of using a walker. Gait and Posture, 2017, 56, 112-118.                                               | 1.4 | 11        |
| 41 | Automatic postural responses are generated according to feet orientation and perturbation magnitude. Gait and Posture, 2017, 57, 172-176.                                                         | 1.4 | 18        |
| 42 | An fMRI-compatible force measurement system for the evaluation of the neural correlates of step initiation. Scientific Reports, 2017, 7, 43088.                                                   | 3.3 | 29        |
| 43 | Dramatic improvement of tardive dyskinesia movements by inline skating. Neurology, 2017, 89, 211-213.                                                                                             | 1.1 | 2         |
| 44 | Modulating Children's Manual Preference Through Spontaneous Nondominant Hand Use. Perceptual<br>and Motor Skills, 2017, 124, 932-945.                                                             | 1.3 | 5         |
| 45 | Improved children's motor learning of the basketball free shooting pattern by associating subjective<br>error estimation and extrinsic feedback. Journal of Sports Sciences, 2017, 35, 1825-1830. | 2.0 | 11        |
| 46 | Interlateral Asymmetries of Body Balance Control Resulting from Cerebral Stroke. , 2017, , 291-305.                                                                                               |     | 2         |
| 47 | Selective Maintenance of Motor Performance in Older Adults From Long-Lasting Sport Practice.<br>Research Quarterly for Exercise and Sport, 2016, 87, 262-270.                                     | 1.4 | 4         |
| 48 | Peduncolopontine DBS improves balance in progressive supranuclear palsy: Instrumental analysis.<br>Clinical Neurophysiology, 2016, 127, 3470-3471.                                                | 1.5 | 6         |
| 49 | Higher order balance control: Distinct effects between cognitive task and manual steadiness constraint on automatic postural responses. Human Movement Science, 2016, 50, 62-72.                  | 1.4 | 10        |
| 50 | Motor imagery training promotes motor learning in adolescents with cerebral palsy: comparison between left and right hemiparesis. Experimental Brain Research, 2016, 234, 1515-1524.              | 1.5 | 23        |
| 51 | Light touch modulates balance recovery following perturbation: from fast response to stance restabilization. Experimental Brain Research, 2015, 233, 1399-1408.                                   | 1.5 | 30        |
| 52 | Precueing time but not direction of postural perturbation induces early muscular activation:<br>Comparison between young and elderly individuals. Neuroscience Letters, 2015, 588, 190-195.       | 2.1 | 8         |
| 53 | Footedness across ages: Distinction between mobilization and stabilization tasks. Laterality, 2015, 20, 141-153.                                                                                  | 1.0 | 13        |
| 54 | Modulation of manual preference induced by lateralized practice diffuses over distinct motor tasks:<br>age-related effects. Frontiers in Psychology, 2014, 5, 1406.                               | 2.1 | 2         |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Aging increases flexibility of postural reactive responses based on constraints imposed by a manual task. Frontiers in Aging Neuroscience, 2014, 6, 327.                                          | 3.4 | 12        |
| 56 | From Specific Training to Global Shift of Manual Preference in Kung Fu Experts. Perceptual and Motor<br>Skills, 2014, 118, 73-85.                                                                 | 1.3 | 10        |
| 57 | Moving What Is Seen: Arm Visibility Modulates Infants' Manual Preference. Developmental<br>Neuropsychology, 2014, 39, 331-341.                                                                    | 1.4 | 6         |
| 58 | Asymmetric balance control between legs for quiet but not for perturbed stance. Experimental Brain<br>Research, 2014, 232, 3269-3276.                                                             | 1.5 | 25        |
| 59 | Resistance Strength Training's Effects on Late Components of Postural Responses in the Elderly.<br>Journal of Aging and Physical Activity, 2013, 21, 208-221.                                     | 1.0 | 4         |
| 60 | Early infant's use of visual feedback in voluntary reaching for a spatial target. Frontiers in<br>Psychology, 2013, 4, 520.                                                                       | 2.1 | 12        |
| 61 | Visibilidade dos braços afeta a preferência manual em bebês. Motriz Revista De Educacao Fisica, 2013, 19,<br>160-170.                                                                             | 0.2 | 2         |
| 62 | A Developmental Perspective of Intermanual Performance Asymmetry in Aiming. Perceptual and Motor<br>Skills, 2012, 115, 153-165.                                                                   | 1.3 | 2         |
| 63 | The interaction of postural and voluntary strategies for stability in Parkinson's disease. Journal of Neurophysiology, 2012, 108, 1244-1252.                                                      | 1.8 | 20        |
| 64 | ls early manual preference in infants defined by intermanual performance asymmetry in reaching?. ,<br>2012, 35, 742-750.                                                                          |     | 10        |
| 65 | Leg Preference and Interlateral Asymmetry of Balance Stability in Soccer Players. Research Quarterly for Exercise and Sport, 2011, 82, 21-27.                                                     | 1.4 | 72        |
| 66 | Intercepting moving targets: does memory from practice in a specific condition of target displacement affect movement timing?. Experimental Brain Research, 2011, 211, 109-117.                   | 1.5 | 8         |
| 67 | Sobre a relação entre filogenia e ontogenia no desenvolvimento da lateralidade na infância.<br>Psicologia: Reflexao E Critica, 2011, 24, 62-70.                                                   | 0.9 | 8         |
| 68 | Preferência manual na ação de alcançar em bebês em função da localização espacial do alvo.<br>Psicologia: Reflexao E Critica, 2011, 24, 318-325.                                                  | 0.9 | 4         |
| 69 | Leg Preference and Interlateral Asymmetry of Balance Stability in Soccer Players. Research Quarterly for Exercise and Sport, 2011, 82, .                                                          | 1.4 | 2         |
| 70 | Avanços e perspectivas da produção cientÃfica brasileira em periódicos internacionais na área de<br>comportamento motor. Revista Brasileira De Cineantropometria E Desempenho Humano, 2011, 11, . | 0.5 | 0         |
| 71 | Ajustes posturais são modulados pela complexidade da tarefa manual. Revista Brasileira De<br>Cineantropometria E Desempenho Humano, 2011, 11, .                                                   | 0.5 | 0         |
| 72 | Amplification and diffusion of manual preference from lateralized practice in children.<br>Developmental Psychobiology, 2010, 52, 723-730.                                                        | 1.6 | 11        |

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | On the functional integration between postural and supra-postural tasks on the basis of contextual cues and task constraint. Gait and Posture, 2010, 32, 615-618.         | 1.4 | 25        |
| 74 | Greater Specificity of Sensorimotor Learning in the Elderly When Acquiring an Interceptive Task.<br>Current Aging Science, 2009, 2, 60-66.                                | 1.2 | 3         |
| 75 | Control of interceptive actions is based on expectancy of time to target arrival. Experimental Brain Research, 2009, 199, 135-143.                                        | 1.5 | 15        |
| 76 | Leg preference and interlateral performance asymmetry in soccer player children. Developmental<br>Psychobiology, 2008, 50, 799-806.                                       | 1.6 | 38        |
| 77 | Categories of manual asymmetry and their variation with advancing age. Cortex, 2008, 44, 707-716.                                                                         | 2.4 | 69        |
| 78 | Adaptability from Contextual Interference in the Learning of an Open Skill is Context Dependent. The<br>Open Sports Medicine Journal, 2008, 2, 56-59.                     | 2.5 | 1         |
| 79 | Shift of manual preference in right-handers following unimanual practice. Brain and Cognition, 2007, 65, 238-243.                                                         | 1.8 | 28        |
| 80 | Shift of manual preference by lateralized practice generalizes to related motor tasks. Experimental<br>Brain Research, 2007, 183, 417-423.                                | 1.5 | 40        |
| 81 | Reprogramming of Interceptive Actions: Time Course of Temporal Corrections for Unexpected Target<br>Velocity Change. Journal of Motor Behavior, 2006, 38, 467-477.        | 0.9 | 18        |
| 82 | Intermanual transfer of timing control between tasks holding different levels of motor complexity.<br>Laterality, 2006, 11, 43-56.                                        | 1.0 | 10        |
| 83 | DeclÃnio de desempenho motor no envelhecimento é especÃfico à tarefa. Revista Brasileira De Medicina<br>Do Esporte, 2006, 12, 351-355.                                    | 0.2 | 14        |
| 84 | Are the Elderly Able to Appropriately Reprogram Their Actions?. Motor Control, 2006, 10, 93-108.                                                                          | 0.6 | 11        |
| 85 | Use of visual information in the correction of interceptive actions. Experimental Brain Research, 2006, 175, 758-763.                                                     | 1.5 | 17        |
| 86 | The continuous nature of timing reprogramming in an interceptive task. Journal of Sports Sciences, 2005, 23, 943-950.                                                     | 2.0 | 19        |
| 87 | Time course of timing reprogramming in interception is modulated by uncertainty on velocity alteration. Revista Portuguesa De CiAªncias Do Desporto, 2005, 2005, 167-173. | 0.0 | 1         |
| 88 | Attending to the non-preferred hand improves bimanual coordination in children. Human Movement<br>Science, 2004, 23, 447-460.                                             | 1.4 | 27        |
| 89 | Intermanual transfer of force control is modulated by asymmetry of muscular strength. Experimental<br>Brain Research, 2003, 149, 312-319.                                 | 1.5 | 25        |
| 90 | Reduction of lateral asymmetries in dribbling: The role of bilateral practice. Laterality, 2003, 8, 53-65.                                                                | 1.0 | 47        |

| #  | Article                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Lateral Asymmetries in the Development of the Overarm Throw. Journal of Motor Behavior, 2002, 34, 151-160.                             | 0.9 | 18        |
| 92 | Timing and Force Components in Bilateral Transfer of Learning. Brain and Cognition, 2000, 44, 455-469.                                 | 1.8 | 76        |
| 93 | Is There Manual Asymmetry in Movement Preparation?. Perceptual and Motor Skills, 1999, 89, 205-208.                                    | 1.3 | 3         |
| 94 | Kinematics of Kicking as a Function of Different Sources of Constraint on Accuracy. Perceptual and<br>Motor Skills, 1999, 88, 785-789. | 1.3 | 39        |
| 95 | IS THERE MANUAL ASYMMETRY IN MOVEMENT PREPARATION?. Perceptual and Motor Skills, 1999, 89, 205.                                        | 1.3 | 2         |
| 96 | Development of Visuomotor Integration in Learning to Grasp a Moving Ball. Perceptual and Motor<br>Skills, 1998, 87, 931-936.           | 1.3 | 1         |
| 97 | Bilateral transfer of learning: what is transfered?. Revista Paulista De Educação FÃsica, 1992, 6, 35.                                 | 0.0 | 1         |
| 98 | Uso de visão periférica na interceptação de alvos móveis. Motriz Revista De Educacao Fisica, 0, , .                                    | 0.2 | 0         |