
David Morse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9159408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A DINOFLAGELLATE TBPâ€LIKE FACTOR ACTIVATES TRANSCRIPTION FROM A TTTTâ€BOX IN YEAST. Journal of Phycology, 2022, 58, 343-346.	2.3	3
2	An overview of transcription in dinoflagellates. Gene, 2022, 829, 146505.	2.2	7
3	Orchestrated translation specializes dinoflagellate metabolism three times per day. Proceedings of the United States of America, 2022, 119, .	7.1	6
4	Assessing nucleic acid binding activity of four dinoflagellate cold shock domain proteins from Symbiodinium kawagutii and Lingulodinium polyedra. BMC Molecular and Cell Biology, 2021, 22, 27.	2.0	4
5	Spatial organization of dinoflagellate genomes: Novel insights and remaining critical questions. Journal of Phycology, 2021, 57, 1674-1678.	2.3	11
6	Label-free MS/MS analyses of the dinoflagellate Lingulodinium identifies rhythmic proteins facilitating adaptation to a diurnal LD cycle. Science of the Total Environment, 2020, 704, 135430.	8.0	6
7	Oxidative stress and toxicology of Cu2+ based on surface areas in mixed cultures of green alga and cyanobacteria: The pivotal role of H2O2. Aquatic Toxicology, 2020, 222, 105450.	4.0	7
8	Assessing Transcriptional Responses to Light by the Dinoflagellate Symbiodinium. Microorganisms, 2019, 7, 261.	3.6	7
9	A Transcriptome-based Perspective of Meiosis in Dinoflagellates. Protist, 2019, 170, 397-403.	1.5	8
10	Fugacium Spliced Leader Genes Identified from Stranded RNA-Seq Datasets. Microorganisms, 2019, 7, 171.	3.6	3
11	Holobiont chronobiology: mycorrhiza may be a key to linking aboveground and underground rhythms. Mycorrhiza, 2019, 29, 403-412.	2.8	15
12	Exploring dinoflagellate biology with high-throughput proteomics. Harmful Algae, 2018, 75, 16-26.	4.8	13
13	A proteomic portrait of dinoflagellate chromatin reveals abundant RNA-binding proteins. Chromosoma, 2018, 127, 29-43.	2.2	13
14	Refining Transcriptome Gene Catalogs by MSâ€Validation of Expressed Proteins. Proteomics, 2018, 18, 1700271.	2.2	6
15	Translation and Translational Control in Dinoflagellates. Microorganisms, 2018, 6, 30.	3.6	26
16	Comparative Genomics Reveals Two Major Bouts of Gene Retroposition Coinciding with Crucial Periods of Symbiodinium Evolution. Genome Biology and Evolution, 2017, 9, 2037-2047.	2.5	33
17	miRNAs Do Not Regulate Circadian Protein Synthesis in the Dinoflagellate Lingulodinium polyedrum. PLoS ONE, 2017, 12, e0168817.	2.5	6
18	Characterization of Two Dinoflagellate Cold Shock Domain Proteins. MSphere, 2016, 1, .	2.9	8

#	Article	IF	CITATIONS
19	The main nitrate transporter of the dinoflagellate Lingulodinium polyedrum is constitutively expressed and not responsible for daily variations in nitrate uptake rates. Harmful Algae, 2016, 55, 272-281.	4.8	9
20	A Transcriptome-based Perspective of Cell Cycle Regulation in Dinoflagellates. Protist, 2016, 167, 610-621.	1.5	14
21	Plasmodium falciparum Rab1A Localizes to Rhoptries in Schizonts. PLoS ONE, 2016, 11, e0158174.	2.5	11
22	\hat{I} -Carbonic Anhydrases: Structure, Distribution, and Potential Roles. , 2015, , 337-349.		2
23	The <i>Symbiodinium kawagutii</i> genome illuminates dinoflagellate gene expression and coral symbiosis. Science, 2015, 350, 691-694.	12.6	430
24	The Dinoflagellate Lingulodinium polyedrum Responds to N Depletion by a Polarized Deposition of Starch and Lipid Bodies. PLoS ONE, 2014, 9, e111067.	2.5	17
25	The Lingulodinium circadian system lacks rhythmic changes in transcript abundance. BMC Biology, 2014, 12, 107.	3.8	38
26	The Dinoflagellate Lingulodinium has Predicted Casein Kinase 2 Sites in Many RNA Binding Proteins. Protist, 2014, 165, 330-342.	1.5	6
27	Degradation of S-RNase in compatible pollen tubes of <i>Solanum chacoense </i> inferred by immunogold labeling. Journal of Cell Science, 2014, 127, 4123-7.	2.0	20
28	Cold-Induced Cysts of the Photosynthetic Dinoflagellate <i>Lingulodinium polyedrum</i> Have an Arrested Circadian Bioluminescence Rhythm and Lower Levels of Protein Phosphorylation Â. Plant Physiology, 2014, 164, 966-977.	4.8	43
29	eEF1A Is an S-RNase Binding Factor in Self-Incompatible Solanum chacoense. PLoS ONE, 2014, 9, e90206.	2.5	14
30	A new dual-specific incompatibility allele revealed by absence of glycosylation in the conserved C2 site of a Solanum chacoense S-RNase. Journal of Experimental Botany, 2013, 64, 1995-2003.	4.8	7
31	Transcription and Maturation of mRNA in Dinoflagellates. Microorganisms, 2013, 1, 71-99.	3.6	27
32	Putting the N in dinoflagellates. Frontiers in Microbiology, 2013, 4, 369.	3.5	104
33	A time course of GFP expression and mRNA stability in pollen tubes following compatible and incompatible pollinations in Solanum chacoense. Sexual Plant Reproduction, 2012, 25, 205-213.	2.2	6
34	Dinoflagellate tandem array gene transcripts are highly conserved and not polycistronic. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15793-15798.	7.1	73
35	Daily Changes in the Phosphoproteome of the Dinoflagellate Lingulodinium. Protist, 2012, 163, 746-754.	1.5	17
36	A Full Suite of Histone and Histone Modifying Genes Are Transcribed in the Dinoflagellate Lingulodinium. PLoS ONE, 2012, 7, e34340.	2.5	55

#	Article	IF	CITATIONS
37	Circadian photosynthetic reductant flow in the dinoflagellate <i>Lingulodinium</i> is limited by carbon availability. Plant, Cell and Environment, 2011, 34, 669-680.	5.7	15
38	Compatible Pollinations in Solanum chacoense Decrease Both S-RNase and S-RNase mRNA. PLoS ONE, 2009, 4, e5774.	2.5	19
39	Identification of Two Plastid Proteins in the Dinoflagellate <i>Alexandrium affine</i> That Are Substantially Down-Regulated by Nitrogen-Depletion. Journal of Proteome Research, 2009, 8, 5080-5092.	3.7	24
40	Phylogeny of Dinoflagellate Plastid Genes Recently Transferred to the Nucleus Supports a Common Ancestry with Red Algal Plastid Genes. Journal of Molecular Evolution, 2008, 66, 175-184.	1.8	12
41	S-Phase and M-Phase Timing Are under Independent Circadian Control in the Dinoflagellate <i>Lingulodinium</i> . Journal of Biological Rhythms, 2008, 23, 400-408.	2.6	19
42	Glycosylation of S-RNases may influence pollen rejection thresholds in <i>Solanum chacoense</i> . Journal of Experimental Botany, 2008, 59, 545-552.	4.8	11
43	Implementing Concept-based Learning in a Large Undergraduate Classroom. CBE Life Sciences Education, 2008, 7, 243-253.	2.3	36
44	Reassessing the role of a 3â€2-UTR-binding translational inhibitor in regulation of circadian bioluminescence rhythm in the dinoflagellate <i>Gonyaulax</i> . Biological Chemistry, 2008, 389, 13-19.	2.5	7
45	An External <i>δ</i> -Carbonic Anhydrase in a Free-Living Marine Dinoflagellate May Circumvent Diffusion-Limited Carbon Acquisition Â. Plant Physiology, 2008, 147, 1427-1436.	4.8	45
46	On the Communication Pathways between the Central Pacemaker and Peripheral Oscillators. Novartis Foundation Symposium, 2008, , 126-139.	1.1	2
47	Imaging protein protein interactions in plants and single cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9917-9918.	7.1	0
48	A dinoflagellate CDK5â€like cyclinâ€dependent kinase. Biology of the Cell, 2007, 99, 531-540.	2.0	5
49	CO ₂ â€CONCENTRATING MECHANISMS OF THE POTENTIALLY TOXIC DINOFLAGELLATE <i>PROTOCERATIUM RETICULATUM</i> (DINOPHYCEAE, GONYAULACALES) ¹ . Journal of Phycology, 2007, 43, 693-701.	2.3	67
50	A Dinoflagellate AAA Family Member Rescues a Conditional Yeast G1/S Phase Cyclin Mutant through Increased CLB5 Accumulation. Protist, 2007, 158, 473-485.	1.5	1
51	The plastid-encoded psbA gene in the dinoflagellate Gonyaulax is not encoded on a minicircle. Gene, 2006, 371, 206-210.	2.2	14
52	Cloning, expression, purification, and properties of a putative plasma membrane hexokinase from Solanum chacoense. Protein Expression and Purification, 2006, 47, 329-339.	1.3	20
53	Rampant polyuridylylation of plastid gene transcripts in the dinoflagellate Lingulodinium. Nucleic Acids Research, 2006, 34, 613-619.	14.5	93
54	Style-by-style analysis of two sporadic self-compatible Solanum chacoense lines supports a primary role for S-RNases in determining pollen rejection thresholds. Journal of Experimental Botany, 2006, 57, 2001-2013.	4.8	32

#	Article	IF	CITATIONS
55	Brefeldin A Inhibits Circadian Remodeling of Chloroplast Structure in the Dinoflagellate Gonyaulax. Traffic, 2005, 6, 548-561.	2.7	20
56	Protein targeting to the chloroplasts of photosynthetic eukaryotes: getting there is half the fun. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1743, 5-19.	4.1	36
57	Molecular analysis of the conserved C4 region of the S11-RNase of Solanum chacoense. Planta, 2005, 221, 531-537.	3.2	16
58	Purification of Plastids from the Dinoflagellate Lingulodinium. Marine Biotechnology, 2005, 7, 659-668.	2.4	9
59	Synthesis and degradation of dinoflagellate plastid-encoded psbA proteins are light-regulated, not circadian-regulated. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2844-2849.	7.1	43
60	Isolation of a dinoflagellate mitotic cyclin by functional complementation in yeast. Biochemical and Biophysical Research Communications, 2004, 323, 1172-1183.	2.1	28
61	HEAVY METAL-INDUCED OXIDATIVE STRESS IN ALGAE1. Journal of Phycology, 2003, 39, 1008-1018.	2.3	887
62	VECTORIAL LABELING OF DINOFLAGELLATE CELL SURFACE PROTEINS1. Journal of Phycology, 2003, 39, 1254-1260.	2.3	13
63	No Circadian Rhythms in Testis: Period1 Expression Is Clock Independent and Developmentally Regulated in the Mouse. Molecular Endocrinology, 2003, 17, 141-151.	3.7	150
64	Plastid ultrastructure defines the protein import pathway in dinoflagellates. Journal of Cell Science, 2003, 116, 2867-2874.	2.0	102
65	The Oscillation of Photosynthetic Capacity in Lingulodinium polyedrum is not related to differences in RuBisCo, Peridinin or Chlorophyll a Amounts. Biological Rhythm Research, 2002, 33, 443-458.	0.9	13
66	Polyadenylated Transcripts Containing Random Gene Fragments are Expressed in Dinoflagellate Mitochondria. Protist, 2002, 153, 111-122.	1.5	36
67	Phenotypic Rescue of a Peripheral Clock Genetic Defect via SCN Hierarchical Dominance. Cell, 2002, 110, 107-117.	28.9	158
68	Time after time: inputs to and outputs from the mammalian circadian oscillators. Trends in Neurosciences, 2002, 25, 632-637.	8.6	90
69	Peridinin-Chlorophyll a-Protein Is not Implicated in the Photosynthesis Rhythm of the Dinoflagellate Gonyaulax despite Circadian Regulation of its Translation. Biological Rhythm Research, 2001, 32, 579-594.	0.9	18
70	Circadian Changes in Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Distribution inside Individual Chloroplasts Can Account for the Rhythm in Dinoflagellate Carbon Fixation. Plant Cell, 2001, 13, 923.	6.6	2
71	Circadian Changes in Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Distribution Inside Individual Chloroplasts Can Account for the Rhythm in Dinoflagellate Carbon Fixation. Plant Cell, 2001, 13, 923-934.	6.6	82
72	Genotype-dependent differences in S12-RNase expression lead to sporadic self-compatibility. Plant Molecular Biology, 2001, 45, 295-305.	3.9	19

#	Article	IF	CITATIONS
73	Rejection of S-Heteroallelic Pollen by a Dual-Specific S-RNase in <i>Solanum chacoense</i> Predicts a Multimeric SI Pollen Component. Genetics, 2001, 159, 329-335.	2.9	95
74	S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility. Nature, 2000, 407, 649-651.	27.8	258
75	Reply: Establishing a Paradigm for the Generation of New S Alleles. Plant Cell, 2000, 12, 313.	6.6	0
76	Reply: Establishing a Paradigm for the Generation of New S Alleles. Plant Cell, 2000, 12, 313-315.	6.6	18
77	Dinoflagellate luciferin-binding protein. Methods in Enzymology, 2000, 305, 258-276.	1.0	2
78	Production of an S RNase with Dual Specificity Suggests a Novel Hypothesis for the Generation of New S Alleles. Plant Cell, 1999, 11, 2087-2097.	6.6	123
79	Circadian Synthesis of a Nuclear-Encoded Chloroplast Glyceraldehyde-3-Phosphate Dehydrogenase in the DinoflagellateGonyaulax polyedrals Translationally Controlledâ€,‡. Biochemistry, 1999, 38, 7689-7695.	2.5	67
80	The Phylogeny of Glyceraldehyde-3-Phosphate Dehydrogenase Indicates Lateral Gene Transfer from Cryptomonads to Dinoflagellates. Journal of Molecular Evolution, 1998, 47, 633-639.	1.8	41
81	Are the Hypervariable Regions of S RNases Sufficient for Allele-Specific Recognition of Pollen? [with Reply]. Plant Cell, 1998, 10, 314.	6.6	14
82	Estimating Chaos in an Insect Population. Science, 1997, 276, 1881-1882.	12.6	35
83	Hypervariable Domains of Self-Incompatibility RNases Mediate Allele-Specific Pollen Recognition Plant Cell, 1997, 9, 1757-1766.	6.6	164
84	CHARACTERIZATION AND MOLECULAR PHYLOGENY OF A PROTEIN KINASE cDNA FROM THE DINOFLAGELLATE GONYAULAX (DINOPHYCEAE)1. Journal of Phycology, 1997, 33, 1063-1072.	2.3	20
85	Expression of a wheat ADP-glucose pyrophosphorylase gene during development of normal and water-stress-affected anthers. Plant Molecular Biology, 1997, 34, 445-453.	3.9	26
86	Structure and organization of the peridinin-chlorophyll a-binding protein gene in Gonyaulax polyedra. Molecular Genetics and Genomics, 1997, 255, 595-604.	2.4	92
87	Phased Protein Synthesis at Several Circadian Times Does Not Change Protein Levels in Gonyaulax. Journal of Biological Rhythms, 1996, 11, 57-67.	2.6	36
88	A nuclear-encoded form II RuBisCO in dinoflagellates. Science, 1995, 268, 1622-1624.	12.6	253
89	Different Phase Responses of the Two Circadian Oscillators in Gonyaulax. Journal of Biological Rhythms, 1994, 9, 263-274.	2.6	59
90	Molecular cloning of two Solanum chacoense S-alleles and a hypothesis concerning their evolution. Sexual Plant Reproduction, 1994, 7, 169.	2.2	12

#	Article	IF	CITATIONS
91	The S11 and S13 self incompatibility alleles in Solanum chacoense Bitt. are remarkably similar. Plant Molecular Biology, 1994, 24, 571-583.	3.9	64
92	Expression and genomic organization of a dinoflagellate gene family. Plant Molecular Biology, 1994, 25, 23-31.	3.9	39
93	ZellulÃæ Mechanismen der inneren Uhr eines Einzellers. Die Naturwissenschaften, 1994, 81, 343-349.	1.6	3
94	Two circadian oscillators in one cell. Nature, 1993, 362, 362-364.	27.8	183
95	CIRCADIAN REGULATION OF BIOLUMINESCENCE IN THE DINOFLAGELLATE PYROCYSTIS LUNULA1. Journal of Phycology, 1993, 29, 173-179.	2.3	44
96	The polypeptide components of scintillons, the bioluminescence organelles of the dinoflagellate <i>Gonyaulax polyedra</i> . Biochemistry and Cell Biology, 1993, 71, 176-182.	2.0	34
97	Colocalization of luciferin binding protein and luciferase to the scintillons ofGonyaulax polyedra revealed by double immunolabeling after fast-freeze fixation. Protoplasma, 1991, 160, 159-166.	2.1	28
98	IN SITU HYBRIDIZATION OF LUCIFERIN-BINDING PROTEIN ANTI-SENSE RNA TO THIN SECTIONS OF THE BIOLUMINESCENT DINOFLAGELLATE GONYAULAX POLYEDRA1. Journal of Phycology, 1991, 27, 436-441.	2.3	6
99	Circadian control over synthesis of manyGonyaulax proteins is at a translational level. Die Naturwissenschaften, 1990, 77, 87-89.	1.6	60
100	What is the clock? Translational regulation of circadian bioluminescence. Trends in Biochemical Sciences, 1990, 15, 262-265.	7.5	81
101	Structure of dinoflagellate luciferin and its enzymic and nonenzymic air-oxidation products. Journal of the American Chemical Society. 1989. 111. 7607-7611.	13.7	149