Vincent M Christoffels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9159329/publications.pdf

Version: 2024-02-01

173 papers 13,056 citations

20817 60 h-index 25787 108 g-index

184 all docs

184 docs citations

184 times ranked 11012 citing authors

#	Article	IF	CITATIONS
1	Cardiac Chamber Formation: Development, Genes, and Evolution. Physiological Reviews, 2003, 83, 1223-1267.	28.8	618
2	Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nature Genetics, 2013, 45, 1044-1049.	21.4	467
3	Chamber Formation and Morphogenesis in the Developing Mammalian Heart. Developmental Biology, 2000, 223, 266-278.	2.0	447
4	Pitx2c and Nkx2-5 Are Required for the Formation and Identity of the Pulmonary Myocardium. Circulation Research, 2007, 101, 902-909.	4.5	370
5	Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes and Development, 2007, 21, 1098-1112.	5.9	346
6	Lineage and Morphogenetic Analysis of the Cardiac Valves. Circulation Research, 2004, 95, 645-654.	4.5	334
7	Molecular Pathway for the Localized Formation of the Sinoatrial Node. Circulation Research, 2007, 100, 354-362.	4.5	331
8	Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes and Development, 2002, 16, 1234-1246.	5.9	319
9	Sensitive Nonradioactive Detection of mRNA in Tissue Sections: Novel Application of the Whole-mount In Situ Hybridization Protocol. Journal of Histochemistry and Cytochemistry, 2001, 49, 1-8.	2.5	314
10	The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovascular Research, 2004, 62, 489-499.	3.8	289
11	Development of the Pacemaker Tissues of the Heart. Circulation Research, 2010, 106, 240-254.	4.5	272
12	Formation of the Sinus Node Head and Differentiation of Sinus Node Myocardium Are Independently Regulated by Tbx18 and Tbx3. Circulation Research, 2009, 104, 388-397.	4.5	264
13	Formation of the Venous Pole of the Heart From an Nkx2–5 –Negative Precursor Population Requires Tbx18. Circulation Research, 2006, 98, 1555-1563.	4.5	263
14	Tbx18 and the fate of epicardial progenitors. Nature, 2009, 458, E8-E9.	27.8	248
15	T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Developmental Dynamics, 2004, 229, 763-770.	1.8	238
16	Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development (Cambridge), 2005, 132, 2697-2707.	2.5	200
17	The formation and function of the cardiac conduction system. Development (Cambridge), 2016, 143, 197-210.	2.5	171
18	Transcription Factor Tbx3 Is Required for the Specification of the Atrioventricular Conduction System. Circulation Research, 2008, 102, 1340-1349.	4.5	170

#	Article	IF	CITATIONS
19	A common genetic variant within SCN10A modulates cardiac SCN5A expression. Journal of Clinical Investigation, 2014, 124, 1844-1852.	8.2	168
20	Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. Journal of Clinical Investigation, 2012, 122, 2519-2530.	8.2	167
21	An interactive three-dimensional digital atlas and quantitative database of human development. Science, 2016, 354, .	12.6	166
22	A Gain-of-Function TBX5 Mutation Is Associated With Atypical Holt–Oram Syndrome and Paroxysmal Atrial Fibrillation. Circulation Research, 2008, 102, 1433-1442.	4.5	158
23	Identification and Functional Characterization of Cardiac Pacemaker Cells in Zebrafish. PLoS ONE, 2012, 7, e47644.	2.5	154
24	The <i>Tbx2</i> ⁺ Primary Myocardium of the Atrioventricular Canal Forms the Atrioventricular Node and the Base of the Left Ventricle. Circulation Research, 2009, 104, 1267-1274.	4.5	147
25	Patterning the Embryonic Heart: Identification of Five Mouse Iroquois Homeobox Genes in the Developing Heart. Developmental Biology, 2000, 224, 263-274.	2.0	143
26	Developmental Basis for Electrophysiological Heterogeneity in the Ventricular and Outflow Tract Myocardium As a Substrate for Life-Threatening Ventricular Arrhythmias. Circulation Research, 2009, 104, 19-31.	4.5	143
27	The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovascular Research, 2010, 87, 92-101.	3.8	142
28	Development of the Cardiac Conduction System. Circulation: Arrhythmia and Electrophysiology, 2009, 2, 195-207.	4.8	139
29	Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2403-2413.	3.8	138
30	T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovascular Research, 2012, 94, 439-449.	3.8	136
31	Expression and regulation of the atrial natriuretic factor encoding gene during development and disease. Cardiovascular Research, 2005, 67, 583-593.	3.8	129
32	Gene and cluster-specific expression of the Iroquois family members during mouse development. Mechanisms of Development, 2001, 107, 169-174.	1.7	128
33	Formation of the Building Plan of the Human Heart. Circulation, 2011, 123, 1125-1135.	1.6	125
34	Architectural Plan for the Heart: Early Patterning and Delineation of the Chambers and the Nodes. Trends in Cardiovascular Medicine, 2004, 14, 301-307.	4.9	123
35	<i>Pitx2</i> modulates a <i>Tbx5</i> -dependent gene regulatory network to maintain atrial rhythm. Science Translational Medicine, 2016, 8, 354ra115.	12.4	123
36	Developmental Origin, Growth, and Three-Dimensional Architecture of the Atrioventricular Conduction Axis of the Mouse Heart. Circulation Research, 2010, 107, 728-736.	4.5	116

#	Article	IF	Citations
37	Lethal arrhythmias in <i>Tbx3</i> -deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E154-63.	7.1	113
38	52 Genetic Loci Influencing MyocardialÂMass. Journal of the American College of Cardiology, 2016, 68, 1435-1448.	2.8	113
39	Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation. Cellular and Molecular Life Sciences, 2012, 69, 1377-1389.	5.4	110
40	Evolution and development of the building plan of the vertebrate heart. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 783-794.	4.1	109
41	Tbx20 Interacts With Smads to Confine <i>Tbx2</i> Expression to the Atrioventricular Canal. Circulation Research, 2009, 105, 442-452.	4.5	108
42	The heart-forming fields: one or multiple?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1257-1265.	4.0	106
43	Tbx1 Coordinates Addition of Posterior Second Heart Field Progenitor Cells to the Arterial and Venous Poles of the Heart. Circulation Research, 2014, 115, 790-799.	4.5	105
44	Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology, 2009, 49, 969-978.	7.3	101
45	HAND2 Targets Define a Network of Transcriptional Regulators that Compartmentalize the Early Limb Bud Mesenchyme. Developmental Cell, 2014, 31, 345-357.	7.0	98
46	Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube. Cardiovascular Research, 2003, 58, 399-409.	3.8	96
47	Identifying the Evolutionary Building Blocks of the Cardiac Conduction System. PLoS ONE, 2012, 7, e44231.	2.5	95
48	Structure and function of the Nppa–Nppb cluster locus during heart development and disease. Cellular and Molecular Life Sciences, 2018, 75, 1435-1444.	5.4	91
49	Canonical Wnt Signaling Regulates Atrioventricular Junction Programming and Electrophysiological Properties. Circulation Research, 2015, 116, 398-406.	4.5	90
50	Presence of Functional Sarcoplasmic Reticulum in the Developing Heart and Its Confinement to Chamber Myocardium. Developmental Biology, 2000, 223, 279-290.	2.0	84
51	Transcriptional regulation of theÂcardiac conduction system. Nature Reviews Cardiology, 2018, 15, 617-630.	13.7	84
52	Tbx2 and Tbx3 Act Downstream of Shh to Maintain Canonical Wnt Signaling during Branching Morphogenesis of the Murine Lung. Developmental Cell, 2016, 39, 239-253.	7.0	82
53	Gene Expression Profiling of the Forming Atrioventricular Node Using a Novel <i>Tbx3</i> -Based Node-Specific Transgenic Reporter. Circulation Research, 2009, 105, 61-69.	4.5	80
54	Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43. Cardiovascular Research, 2008, 78, 485-493.	3.8	79

#	Article	IF	CITATIONS
55	Molecular Analysis of Patterning of Conduction Tissues in the Developing Human Heart. Circulation: Arrhythmia and Electrophysiology, 2011, 4, 532-542.	4.8	78
56	GATA-dependent regulatory switches establish atrioventricular canal specificity during heart development. Nature Communications, 2014, 5, 3680.	12.8	78
57	Defective Tbx2-dependent patterning of the atrioventricular canal myocardium causes accessory pathway formation in mice. Journal of Clinical Investigation, 2011, 121, 534-544.	8.2	78
58	Development, Proliferation, and Growth of the Mammalian Heart. Molecular Therapy, 2018, 26, 1599-1609.	8.2	76
59	Tbx2 Controls Lung Growth by Direct Repression of the Cell Cycle Inhibitor Genes Cdkn1a and Cdkn1b. PLoS Genetics, 2013, 9, e1003189.	3. 5	72
60	Conserved <i>NPPB</i> + Border Zone Switches From MEF2- to AP-1–Driven Gene Program. Circulation, 2019, 140, 864-879.	1.6	70
61	Identification of a Tbx1/Tbx2/Tbx3 genetic pathway governing pharyngeal and arterial pole morphogenesis. Human Molecular Genetics, 2012, 21, 1217-1229.	2.9	68
62	Identification of atrial fibrillation associated genes and functional non-coding variants. Nature Communications, 2019, 10, 4755.	12.8	64
63	Developmental pattern of ANF gene expression reveals a strict localization of cardiac chamber formation in chicken. The Anatomical Record, 2002, 266, 93-102.	1.8	62
64	Wnt signaling regulates atrioventricular canal formation upstream of <i>BMP</i> and <i>Tbx2</i> Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 435-440.	1.6	59
65	Homeobox transcription factor Pitx2: The rise of an asymmetry gene in cardiogenesis and arrhythmogenesis. Trends in Cardiovascular Medicine, 2014, 24, 23-31.	4.9	59
66	Three-Dimensional and Molecular Analysis of the Venous Pole of the Developing Human Heart. Circulation, 2010, 122, 798-807.	1.6	57
67	Transcriptome analysis of mouse and human sinoatrial node cells reveals a conserved genetic program. Development (Cambridge), 2019, 146, .	2.5	54
68	TBX3 and its splice variant TBX3Â+Âexon 2a are functionally similar. Pigment Cell and Melanoma Research, 2008, 21, 379-387.	3.3	53
69	Genetics of congenital heart disease: the contribution of the noncoding regulatory genome. Journal of Human Genetics, 2016, 61, 13-19.	2.3	52
70	Early repolarization in mice causes overestimation of ventricular activation time by the QRS duration. Cardiovascular Research, 2013, 97, 182-191.	3.8	49
71	Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circulation Research, 2020, 127, 34-50.	4.5	48
72	Atrial fibrillation: A developmental point of view. Heart Rhythm, 2009, 6, 1818-1824.	0.7	46

#	Article	IF	Citations
73	Tbx2 Terminates Shh/Fgf Signaling in the Developing Mouse Limb Bud by Direct Repression of Gremlin1. PLoS Genetics, 2013, 9, e1003467.	3.5	46
74	Anatomic substrates for cardiac conduction. Heart Rhythm, 2005, 2, 875-886.	0.7	45
75	Distinct Regulation of Developmental and Heart Disease–Induced Atrial Natriuretic Factor Expression by Two Separate Distal Sequences. Circulation Research, 2008, 102, 849-859.	4.5	45
76	Genetic Determinants of P Wave Duration and PR Segment. Circulation: Cardiovascular Genetics, 2014, 7, 475-481.	5.1	45
77	Mkk4 Is a Negative Regulator of the Transforming Growth Factor Beta 1 Signaling Associated With Atrial Remodeling and Arrhythmogenesis With Age. Journal of the American Heart Association, 2014, 3, e000340.	3.7	45
78	The past, present, and future of pacemaker therapies. Trends in Cardiovascular Medicine, 2015, 25, 661-673.	4.9	45
79	A Large Permissive Regulatory Domain Exclusively Controls Tbx3 Expression in the Cardiac Conduction System. Circulation Research, 2014, 115, 432-441.	4.5	44
80	Slitâ€"Roundabout Signaling Regulates the Development of the Cardiac Systemic Venous Return and Pericardium. Circulation Research, 2013, 112, 465-475.	4.5	42
81	Excessive trabeculations in noncompaction do not have the embryonic identity. International Journal of Cardiology, 2017, 227, 325-330.	1.7	41
82	An inactivating mutation in the histone deacetylase SIRT6 causes human perinatal lethality. Genes and Development, 2018, 32, 373-388.	5.9	41
83	A mechanistic model for the development and maintenance of portocentral gradients in gene expression in the liver. Hepatology, 1999, 29, 1180-1192.	7.3	40
84	Wt1 and Retinoic Acid Signaling in the Subcoelomic Mesenchyme Control the Development of the Pleuropericardial Membranes and the Sinus Horns. Circulation Research, 2010, 106, 1212-1220.	4.5	40
85	Identification of a regulatory domain controlling the Nppa-Nppb gene cluster during heart development and stress. Development (Cambridge), 2016, 143, 2135-46.	2.5	40
86	Expression and requirement of T-box transcription factors Tbx2 and Tbx3 during secondary palate development in the mouse. Developmental Biology, 2009, 336, 145-155.	2.0	37
87	A transgenic mouse model for the simultaneous monitoring of ANF and BNP gene activity during heart development and disease. Cardiovascular Research, 2014, 101, 78-86.	3.8	37
88	Specialized impulse conduction pathway in the alligator heart. ELife, 2018, 7, .	6.0	37
89	Comparative analysis of the natriuretic peptide precursor gene cluster in vertebrates reveals loss of ANF and retention of CNP-3 in chicken. Developmental Dynamics, 2005, 233, 1076-1082.	1.8	35
90	EMERGE: a flexible modelling framework to predict genomic regulatory elements from genomic signatures. Nucleic Acids Research, 2016, 44, e42-e42.	14.5	34

#	Article	IF	CITATIONS
91	On the Evolution of the Cardiac Pacemaker. Journal of Cardiovascular Development and Disease, 2017, 4, 4.	1.6	33
92	Identification of Functional Variant Enhancers Associated With Atrial Fibrillation. Circulation Research, 2020, 127, 229-243.	4.5	33
93	Expression of Irx6 during mouse morphogenesis. Mechanisms of Development, 2001, 103, 193-195.	1.7	32
94	Evolution of the Sinus Venosus from Fish to Human. Journal of Cardiovascular Development and Disease, 2014, 1, 14-28.	1.6	32
95	TBX2 and TBX3 act downstream of canonical WNT signaling in patterning and differentiation of the mouse ureteric mesenchyme. Development (Cambridge), 2018, 145, .	2.5	32
96	Genetic Dissection of a Super Enhancer Controlling the <i>Nppa-Nppb</i> Cluster in the Heart. Circulation Research, 2021, 128, 115-129.	4. 5	32
97	Regulation of otocyst patterning by <i>Tbx2</i> and <i>Tbx3</i> is required for inner ear morphogenesis in the mouse. Development (Cambridge), 2021, 148, .	2.5	32
98	The Cardiac Pacemaker and Conduction System Develops From Embryonic Myocardium that Retains Its Primitive Phenotype. Journal of Cardiovascular Pharmacology, 2010, 56, 6-15.	1.9	31
99	The Atrioventricular Node: Origin, Development, and Genetic Program. Trends in Cardiovascular Medicine, 2010, 20, 164-171.	4.9	29
100	Atrial cardiomyocyteâ€specific expression of Cre recombinase driven by an <i>Nppa</i> gene fragment. Genesis, 2003, 37, 1-4.	1.6	28
101	GATA-dependent transcriptional and epigenetic control of cardiac lineage specification and differentiation. Cellular and Molecular Life Sciences, 2015, 72, 3871-3881.	5.4	28
102	Retinoic acid signaling in heart development: Application in the differentiation of cardiovascular lineages from human pluripotent stem cells. Stem Cell Reports, 2021, 16, 2589-2606.	4.8	28
103	Development of the Cardiac Conduction System: A Matter of Chamber Development. Novartis Foundation Symposium, 2008, , 25-43.	1.1	27
104	Embryonic Tbx3+ cardiomyocytes form the mature cardiac conduction system by progressive fate restriction. Development (Cambridge), 2018, 145, .	2.5	27
105	Morpho-functional characterization of the systemic venous pole of the reptile heart. Scientific Reports, 2017, 7, 6644.	3.3	26
106	Can recent insights into cardiac development improve our understanding of congenitally malformed hearts?. Clinical Anatomy, 2009, 22, 4-20.	2.7	25
107	Developmental aspects of cardiac arrhythmogenesis. Cardiovascular Research, 2011, 91, 243-251.	3.8	25
108	Partial Absence of Pleuropericardial Membranes in Tbx18- and Wt1-Deficient Mice. PLoS ONE, 2012, 7, e45100.	2.5	25

#	Article	IF	CITATIONS
109	Developmental Origin of the Cardiac Conduction System: Insight from Lineage Tracing. Pediatric Cardiology, 2018, 39, 1107-1114.	1.3	25
110	Quantified growth of the human embryonic heart. Biology Open, 2021, 10, .	1.2	25
111	An enhancer cluster controls gene activity and topology of the SCN5A-SCN10A locus in vivo. Nature Communications, 2019, 10, 4943.	12.8	24
112	Why increased nuchal translucency is associated with congenital heart disease: a systematic review on genetic mechanisms. Prenatal Diagnosis, 2015, 35, 517-528.	2.3	22
113	Genome-Wide Analysis Identifies an Essential Human TBX3 Pacemaker Enhancer. Circulation Research, 2020, 127, 1522-1535.	4.5	22
114	Origin and development of the atrioventricular myocardial lineage: Insight into the development of accessory pathways. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 565-577.	1.6	21
115	A mutation in the Kozak sequence of <i>GATA4</i> hampers translation in a family with atrial septal defects. American Journal of Medical Genetics, Part A, 2014, 164, 2732-2738.	1.2	21
116	Cardiac Morphogenesis: Specification of the Four-Chambered Heart. Cold Spring Harbor Perspectives in Biology, 2020, 12, a037143.	5.5	21
117	Cardiac expression of Gal4 causes cardiomyopathy in a dose-dependent manner. Journal of Muscle Research and Cell Motility, 2003, 24, 205-209.	2.0	20
118	Variant Intronic Enhancer Controls <i>SCN10A-short</i> Expression and Heart Conduction. Circulation, 2021, 144, 229-242.	1.6	20
119	Variation in a Left Ventricle–Specific <i>Hand1</i> Enhancer Impairs GATA Transcription Factor Binding and Disrupts Conduction System Development and Function. Circulation Research, 2019, 125, 575-589.	4.5	19
120	T-box transcription factor 3 governs a transcriptional program for the function of the mouse atrioventricular conduction system. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18617-18626.	7.1	19
121	ldentification of the building blocks of ventricular septation in monitor lizards (Varanidae). Development (Cambridge), 2019, 146, .	2.5	18
122	Lack of morphometric evidence for ventricular compaction in humans. Journal of Cardiology, 2021, 78, 397-405.	1.9	18
123	Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118509.	4.1	16
124	Identification and Characterization of a Transcribed Distal Enhancer Involved in Cardiac Kcnh2 Regulation. Cell Reports, 2019, 28, 2704-2714.e5.	6.4	15
125	Higher spatial resolution improves the interpretation of the extent of ventricular trabeculation. Journal of Anatomy, 2022, 240, 357-375.	1.5	15
126	Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries. Circulation Research, 2022, 130, 166-180.	4.5	15

#	Article	IF	CITATIONS
127	Patient-Specific TBX5-G125R Variant Induces Profound Transcriptional Deregulation and Atrial Dysfunction. Circulation, 2022, 145, 606-619.	1.6	15
128	Developing insights into cardiac regeneration. Development (Cambridge), 2013, 140, 3933-3937.	2.5	14
129	Comparative analysis of avian hearts provides little evidence for variation among species with acquired endothermy. Journal of Morphology, 2019, 280, 395-410.	1.2	14
130	Reptiles as a Model System to Study Heart Development. Cold Spring Harbor Perspectives in Biology, 2020, 12, a037226.	5.5	14
131	Transcriptional Repressor Tbx3 Is Required for the Hormone-Sensing Cell Lineage in Mammary Epithelium. PLoS ONE, 2014, 9, e110191.	2.5	13
132	Generation of mice with a conditional null allele for <i>Tbx2</i> . Genesis, 2010, 48, 195-199.	1.6	12
133	Electrophysiological Patterning of the Heart. Pediatric Cardiology, 2012, 33, 900-906.	1.3	12
134	Sinus venosus incorporation: contentious issues and operational criteria for developmental and evolutionary studies. Journal of Anatomy, 2019, 234, 583-591.	1.5	12
135	Nuclear Receptor Nur77 Controls Cardiac Fibrosis through Distinct Actions on Fibroblasts and Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 1600.	4.1	12
136	Morphogenesis of the Vertebrate Heart. Advances in Developmental Biology (Amsterdam,) Tj ETQq0 0 0 rgBT /O	verlock 10 0.4	Tf 50 382 Td
137	Localized and Temporal Gene Regulation in Heart Development. Current Topics in Developmental Biology, 2012, 100, 171-201.	2.2	11
138	OccuPeak: ChIP-Seq Peak Calling Based on Internal Background Modelling. PLoS ONE, 2014, 9, e99844.	2.5	11
139	A Variant Noncoding Region Regulates <i>Prrx1</i> and Predisposes to Atrial Arrhythmias. Circulation Research, 2021, 129, 420-434.	4.5	11
140	Popeye proteins: muscle for the aging sinus node. Journal of Clinical Investigation, 2012, 122, 810-813.	8.2	11
141	Origins and consequences of congenital heart defects affecting the right ventricle. Cardiovascular Research, 2017, 113, 1509-1520.	3.8	10
142	Twisting of the zebrafish heart tube during cardiac looping is a tbx5-dependent and tissue-intrinsic process. ELife, 2021, 10, .	6.0	10
143	From GWAS to function: Genetic variation in sodium channel gene enhancer influences electrical patterning. Trends in Cardiovascular Medicine, 2014, 24, 99-104.	4.9	9
144	Lineages of the Cardiac Conduction System. Journal of Cardiovascular Development and Disease, 2017, 4, 5.	1.6	9

#	Article	IF	Citations
145	Early Cardiac Growth and the Ballooning Model of Cardiac Chamber Formation. , 2010, , 219-236.		8
146	Increased nuchal translucency origins from abnormal lymphatic development and is independent of the presence of a cardiac defect. Prenatal Diagnosis, 2015, 35, 1278-1286.	2.3	8
147	Epithelial Myeloid-Differentiation Factor 88 Is Dispensable duringKlebsiellaPneumonia. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 648-656.	2.9	8
148	TBX2-positive cells represent a multi-potent mesenchymal progenitor pool in the developing lung. Respiratory Research, 2019, 20, 292.	3.6	8
149	Combined genomic and proteomic approaches reveal DNA binding sites and interaction partners of TBX2 in the developing lung. Respiratory Research, 2021, 22, 85.	3.6	8
150	Patterning and Development of the Conduction System of the Heart., 2010,, 171-192.		7
151	Systematic analysis of the development of the ductus venosus in wild type mouse and human embryos. Early Human Development, 2013, 89, 1067-1073.	1.8	7
152	Lack of Genetic Interaction between Tbx18 and Tbx2/Tbx20 in Mouse Epicardial Development. PLoS ONE, 2016, 11, e0156787.	2.5	7
153	Cardiomyocyte Progenitor Cells as a Functional Gene Delivery Vehicle for Long-Term Biological Pacing. Molecules, 2019, 24, 181.	3.8	7
154	The formation of the atrioventricular conduction axis is linked in development to ventricular septation. Journal of Experimental Biology, 2020, 223, .	1.7	7
155	Germline variants in HEY2 functional domains lead to congenital heart defects and thoracic aortic aneurysms. Genetics in Medicine, 2021, 23, 103-110.	2.4	7
156	Trait-associated noncoding variant regions affect TBX3 regulation and cardiac conduction. ELife, 2020, 9, .	6.0	7
157	Gene regulatory elements of the cardiac conduction system. Briefings in Functional Genomics, 2014, 13, 28-38.	2.7	6
158	Low incidence of atrial septal defects in nonmammalian vertebrates. Evolution & Development, 2020, 22, 241-256.	2.0	6
159	Integrating multi-scale knowledge on cardiac development into a computational model of ventricular trabeculation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2014, 6, 389-397.	6.6	5
160	Toward Biological Pacing by Cellular Delivery of Hcn2/SkM1. Frontiers in Physiology, 2020, 11, 588679.	2.8	5
161	Cardiac defects, nuchal edema and abnormal lymphatic development are not associated with morphological changes in the ductus venosus. Early Human Development, 2016, 101, 39-48.	1.8	3
162	Direct Reprograming to Regenerate Myocardium and Repair Its Pacemaker and Conduction System. Medicines (Basel, Switzerland), 2018, 5, 48.	1.4	3

#	Article	IF	CITATIONS
163	Epigenetic State Changes Underlie Metabolic Switch in Mouse Post-Infarction Border Zone Cardiomyocytes. Journal of Cardiovascular Development and Disease, 2021, 8, 134.	1.6	3
164	Fetal Tricuspid Valve Agenesis/Atresia: Testing Predictions of the Embryonic Etiology. Pediatric Cardiology, 2022, 43, 796-806.	1.3	3
165	An Appreciation of Anatomy in the Molecular World. Journal of Cardiovascular Development and Disease, 2020, 7, 44.	1.6	2
166	Early Postnatal Cardiac Stress Does Not Influence Ventricular Cardiomyocyte Cell-Cycle Withdrawal. Journal of Cardiovascular Development and Disease, 2021, 8, 38.	1.6	2
167	The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovascular Research, 2004, 62, 489-499.	3.8	2
168	Absence of an anatomical origin for altered ductus venosus flow velocity waveforms in firstâ€trimester human fetuses with increased nuchal translucency. Prenatal Diagnosis, 2016, 36, 537-544.	2.3	1
169	Developmental Aspects of the Electrophysiology of the Heart: Function Follows Form. , 2008, , 24-36.		1
170	Regulation of Vertebrate Conduction System Development. , 2016, , 269-280.		1
171	Cardiac Conduction System., 2016,, 83-95.		O
172	Developmental Aspects of the Electrophysiology of the Heart: Function Follows Form., 2013,, 25-45.		0
173	Reply to Stöllberger et al Journal of Anatomy, 2022, , .	1.5	O