Robby Stoks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9158718/publications.pdf

Version: 2024-02-01

279 papers

11,325 citations

54 h-index 85 g-index

280 all docs 280 docs citations

times ranked

280

7879 citing authors

#	Article	IF	CITATIONS
1	Acute warming increases pesticide toxicity more than transgenerational warming by reducing the energy budget. Science of the Total Environment, 2022, 805, 150373.	8.0	8
2	Cryptic ecoâ€evolutionary feedback in the city: Urban evolution of prey dampens the effect of urban evolution of the predator. Journal of Animal Ecology, 2022, 91, 514-526.	2.8	10
3	Warming, temperature fluctuations and thermal evolution change the effects of microplastics at an environmentally relevant concentration. Environmental Pollution, 2022, 292, 118363.	7.5	29
4	Multigenerational effects modify the tolerance of mosquito larvae to chlorpyrifos but not to a heat spike and do not change their synergism. Environmental Pollution, 2022, 292, 118333.	7.5	5
5	Convergence of life history and physiology during range expansion toward the phenotype of the native sister species. Science of the Total Environment, 2022, 816, 151530.	8.0	2
6	Adaptive and Maladaptive Consequences of Larval Stressors for Metamorphic and Postmetamorphic Traits and Fitness. Fascinating Life Sciences, 2022, , 217-265.	0.9	4
7	Thermal plasticity and evolution shape predator–prey interactions differently in clear and turbid water bodies. Journal of Animal Ecology, 2022, 91, 883-894.	2.8	4
8	A fast pace-of-life is traded off against a high thermal performance. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212414.	2.6	17
9	Scared to evolve? Non-consumptive effects drive rapid adaptive evolution in a natural prey population. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220188.	2.6	3
10	Evolution of pesticide tolerance and associated changes in the microbiome in the water flea Daphnia magna. Ecotoxicology and Environmental Safety, 2022, 240, 113697.	6.0	6
11	Genetic variation of the interaction type between two stressors in a single population: From antagonism to synergism when combining a heat spike and a pesticide. Environmental Pollution, 2022, , 119654.	7.5	2
12	Editorial overview: Global Change: Coping with the complexity of interacting stressors, interacting responses, and their feedback loops. Current Opinion in Insect Science, 2022, , 100949.	4.4	0
13	Phenological Shifts in a Warming World Affect Physiology and Life History in a Damselfly. Insects, 2022, 13, 622.	2.2	5
14	Lower bioenergetic costs but similar immune responsiveness under a heat wave in urban compared to rural damselflies. Evolutionary Applications, 2021, 14, 24-35.	3.1	18
15	Seasonal time constraints shape life history, physiology and behaviour independently, and decouple a behavioural syndrome in a damselfly. Oikos, 2021, 130, 274-286.	2.7	4
16	Daily temperature variation lowers the lethal and sublethal impact of a pesticide pulse due to a higher degradation rate. Chemosphere, 2021, 263, 128114.	8.2	11
17	Locally adapted gut microbiomes mediate host stress tolerance. ISME Journal, 2021, 15, 2401-2414.	9.8	30
18	Resurrecting the metabolome: Rapid evolution magnifies the metabolomic plasticity to predation in a natural <i>Daphnia</i> population. Molecular Ecology, 2021, 30, 2285-2297.	3.9	6

#	Article	IF	Citations
19	Evolution of cold tolerance and thermal plasticity in life history, behaviour and physiology during a poleward range expansion. Journal of Animal Ecology, 2021, 90, 1666-1677.	2.8	16
20	Thermal evolution ameliorates the longâ€term plastic effects of warming, temperature fluctuations and heat waves on predator–prey interaction strength. Functional Ecology, 2021, 35, 1538-1549.	3.6	12
21	The impact of salinity on a saline water insect: Contrasting survival and energy budget. Journal of Insect Physiology, 2021, 131, 104224.	2.0	9
22	Hox dosage contributes to flight appendage morphology in Drosophila. Nature Communications, 2021, 12, 2892.	12.8	30
23	Higher mean and fluctuating temperatures jointly determine the impact of the pesticide chlorpyrifos on the growth rate and leaf consumption of a freshwater isopod. Chemosphere, 2021, 273, 128528.	8.2	10
24	Sizeâ€mediated priority effects are traitâ€dependent and consistent across latitudes in a damselfly. Oikos, 2021, 130, 1535-1547.	2.7	11
25	The pace-of life explains whether gills improve or exacerbate pesticide sensitivity in a damselfly larva. Environmental Pollution, 2021, 282, 117019.	7.5	6
26	Transgenerational exposure to warming reduces the sensitivity to a pesticide under warming. Environmental Pollution, 2021, 284, 117217.	7.5	9
27	Evolution of tolerance to chlorpyrifos causes cross-tolerance to another organophosphate and a carbamate, but reduces tolerance to a neonicotinoid and a pharmaceutical. Aquatic Toxicology, 2021, 240, 105980.	4.0	5
28	Effects of predator cues and pesticide resistance on the toxicity of a (bio)pesticide mixture. Pest Management Science, 2020, 76, 1448-1455.	3.4	7
29	Effects of pesticide exposure and predation risk on nutrient cycling and primary production. Science of the Total Environment, 2020, 705, 135880.	8.0	6
30	The effect of warming on pesticide toxicity is reversed between developmental stages in the mosquito Culex pipiens. Science of the Total Environment, 2020, 717, 134811.	8.0	13
31	Urbanization drives crossâ€ŧaxon declines in abundance and diversity at multiple spatial scales. Global Change Biology, 2020, 26, 1196-1211.	9.5	167
32	Negative bioenergetic responses to pesticides in damselfly larvae are more likely when it is hotter and when temperatures fluctuate. Chemosphere, 2020, 243, 125369.	8.2	24
33	Reduced stress defence responses contribute to the higher toxicity of a pesticide under warming. Molecular Ecology, 2020, 29, 4735-4748.	3.9	10
34	Genetic compensation rather than genetic assimilation drives the evolution of plasticity in response to mild warming across latitudes in a damselfly. Molecular Ecology, 2020, 29, 4823-4834.	3.9	17
35	Thermal evolution of life history and heat tolerance during range expansions toward warmer and cooler regions. Ecology, 2020, 101, e03134.	3.2	14
36	The Exposure Order Strongly Modifies How a Heat Spike Increases Pesticide Toxicity. Environmental Science & Environmental Scie	10.0	15

#	Article	IF	Citations
37	Live fast, die old: oxidative stress as a potential mediator of an unexpected lifeâ€history evolution. Oikos, 2020, 129, 1330-1340.	2.7	5
38	Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200421.	2.6	191
39	Oxidative stress mediates rapid compensatory growth and its costs. Functional Ecology, 2020, 34, 2087-2097.	3.6	15
40	Support for the climatic variability hypothesis depends on the type of thermal plasticity: lessons from predation rates. Oikos, 2020, 129, 1040-1050.	2.7	6
41	Effects of thermal evolution on the stoichiometric responses to nano-ZnO under warming are not general: insights from experimental evolution. Ecotoxicology, 2020, 29, 175-184.	2.4	3
42	Strong species differences in life history do not predict oxidative stress physiology or sensitivity to an environmental oxidant. Journal of Animal Ecology, 2020, 89, 1711-1721.	2.8	3
43	Mosquito larvae that survive a heat spike are less sensitive to subsequent exposure to the pesticide chlorpyrifos. Environmental Pollution, 2020, 265, 114824.	7.5	13
44	Latitudeâ€associated evolution and drivers of thermal response curves in body stoichiometry. Journal of Animal Ecology, 2019, 88, 1961-1972.	2.8	14
45	Temperature variation magnifies chlorpyrifos toxicity differently between larval and adult mosquitoes. Science of the Total Environment, 2019, 690, 1237-1244.	8.0	21
46	Shrinking Body Size and Physiology Contribute to Geographic Variation and the Higher Toxicity of Pesticides in a Warming World. Environmental Science & Environmental Science & 2019, 53, 11515-11523.	10.0	18
47	Resistance to a chemical pesticide increases vulnerability to a biopesticide: Effects on direct mortality and mortality by predation. Aquatic Toxicology, 2019, 216, 105310.	4.0	14
48	Predator species related adaptive changes in larval growth and digestive physiology. Journal of Insect Physiology, 2019, 114, 23-29.	2.0	1
49	Rapid evolution in response to warming does not affect the toxicity of a pollutant: Insights from experimental evolution in heated mesocosms. Evolutionary Applications, 2019, 12, 977-988.	3.1	10
50	Using natural laboratories to study evolution to global warming: contrasting altitudinal, latitudinal, and urbanization gradients. Current Opinion in Insect Science, 2019, 35, 10-19.	4.4	40
51	Additive bioenergetic responses to a pesticide and predation risk in an aquatic insect. Aquatic Toxicology, 2019, 212, 205-213.	4.0	14
52	Whether warming magnifies the toxicity of a pesticide is strongly dependent on the concentration and the null model. Aquatic Toxicology, 2019, 211, 38-45.	4.0	20
53	Eco-immunology of native and invasive water bugs in response to water mite parasites: insights from phenoloxidase activity. Biological Invasions, 2019, 21, 2431-2445.	2.4	8
54	Increased Daily Temperature Fluctuations Overrule the Ability of Gradual Thermal Evolution to Offset the Increased Pesticide Toxicity under Global Warming. Environmental Science & Eamp; Technology, 2019, 53, 4600-4608.	10.0	44

#	Article	IF	Citations
55	Current and future daily temperature fluctuations make a pesticide more toxic: Contrasting effects on life history and physiology. Environmental Pollution, 2019, 248, 209-218.	7.5	30
56	Pace of life syndrome under warming and pollution: integrating life history, behavior, and physiology across latitudes. Ecological Monographs, 2019, 89, e01332.	5.4	55
57	Analysing ecoâ€evolutionary dynamicsâ€"The challenging complexity of the real world. Functional Ecology, 2019, 33, 43-59.	3.6	80
58	Daily temperature variation magnifies the toxicity of a mixture consisting of a chemical pesticide and a biopesticide in a vector mosquito. Science of the Total Environment, 2019, 659, 33-40.	8.0	25
59	An adaptive transgenerational effect of warming but not of pesticide exposure determines how a pesticide and warming interact for antipredator behaviour. Environmental Pollution, 2019, 245, 307-315.	7.5	17
60	Temperature variation makes an ectotherm more sensitive to global warming unless thermal evolution occurs. Journal of Animal Ecology, 2019, 88, 624-636.	2.8	48
61	Population-, sex- and individual level divergence in life-history and activity patterns in an annual killifish. Peerl, 2019, 7, e7177.	2.0	15
62	A widespread morphological antipredator mechanism reduces the sensitivity to pesticides and increases the susceptibility to warming. Science of the Total Environment, 2018, 626, 1230-1235.	8.0	17
63	Voltinism-associated differences in winter survival across latitudes: integrating growth, physiology, and food intake. Oecologia, 2018, 186, 919-929.	2.0	9
64	Rapid larval development under time stress reduces adult life span through increasing oxidative damage. Functional Ecology, 2018, 32, 1036-1045.	3.6	42
65	Thermal evolution offsets the elevated toxicity of a contaminant under warming: A resurrection study in <i>Daphnia magna</i> . Evolutionary Applications, 2018, 11, 1425-1436.	3.1	19
66	Warming under seminatural outdoor conditions in the larval stage negatively affects insect flight performance. Biology Letters, 2018, 14, 20180121.	2.3	5
67	Transgenerational interactions between pesticide exposure and warming in a vector mosquito. Evolutionary Applications, 2018, 11, 906-917.	3.1	39
68	Genetic adaptation as a biological buffer against climate change: Potential and limitations. Integrative Zoology, 2018, 13, 372-391.	2.6	56
69	Pathways to fitness: carryâ€over effects of late hatching and urbanisation on lifetime mating success. Oikos, 2018, 127, 949-959.	2.7	17
70	Kin competition accelerates experimental range expansion in an arthropod herbivore. Ecology Letters, 2018, 21, 225-234.	6.4	46
71	Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy. Environmental Pollution, 2018, 233, 226-234.	7.5	18
72	Stoichiometric responses to nano ZnO under warming are modified by thermal evolution in Daphnia magna. Aquatic Toxicology, 2018, 202, 90-96.	4.0	6

#	Article	IF	CITATIONS
73	Evolution of geographic variation in thermal performance curves in the face of climate change and implications for biotic interactions. Current Opinion in Insect Science, 2018, 29, 78-84.	4.4	34
74	Urbanization drives genetic differentiation in physiology and structures the evolution of pace-of-life syndromes in the water flea <i>Daphnia magna</i> . Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180169.	2.6	31
75	Combined effects of cadmium exposure and temperature on the annual killifish (<i>Nothobranchius) Tj ETQq1</i>	1 0.784314 4.3	l rgBT /Overlo
76	Oviposition plant choice maximizes offspring fitness in an aquatic predatory insect. Hydrobiologia, 2018, 823, 1-12.	2.0	15
77	Strong differences between two congeneric species in sensitivity to pesticides in a warming world. Science of the Total Environment, 2018, 618, 60-69.	8.0	8
78	Within-season variation in sexual selection on flight performance and flight-related traits in a damselfly. Evolutionary Ecology, 2017, 31, 21-36.	1.2	5
79	Selection on escape performance during ecological speciation driven by predation. Animal Behaviour, 2017, 124, 153-159.	1.9	10
80	Integrating both interaction pathways between warming and pesticide exposure on upper thermal tolerance in high- and low-latitude populations of an aquatic insect. Environmental Pollution, 2017, 224, 714-721.	7. 5	48
81	New records of host-parasite relationships between Coenagrion scitulum (Rambur, 1842) (Odonata) and water mite larvae (Hydrachnidia) in core and edge host populations. Acta Parasitologica, 2017, 62, 38-45.	1.1	5
82	Strong Delayed Interactive Effects of Metal Exposure and Warming: Latitude-Dependent Synergisms Persist Across Metamorphosis. Environmental Science & Environmental Science & 2017, 51, 2409-2417.	10.0	50
83	Egg hatching phenology and success of <i>Lestes macrostigma</i> in two temporary brackish ponds. International Journal of Odonatology, 2017, 20, 1-12.	0.5	5
84	Chlorpyrifos-induced oxidative damage is reduced under warming and predation risk: Explaining antagonistic interactions with a pesticide. Environmental Pollution, 2017, 226, 79-88.	7.5	41
85	The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size. Global Change Biology, 2017, 23, 5218-5227.	9.5	141
86	Latitudinal and age-specific patterns of larval mortality in the damselfly Lestes sponsa: Senescence before maturity? Experimental Gerontology, 2017, 95, 107-115.	2.8	9
87	Integrating multiple stressors across life stages and latitudes: Combined and delayed effects of an egg heat wave and larval pesticide exposure in a damselfly. Aquatic Toxicology, 2017, 186, 113-122.	4.0	32
88	Wing shape-mediated carry-over effects of a heat wave during the larval stage on post-metamorphic locomotor ability. Oecologia, 2017, 184, 279-291.	2.0	27
89	Negative effects of pesticides under global warming can be counteracted by a higher degradation rate and thermal adaptation. Journal of Applied Ecology, 2017, 54, 1847-1855.	4.0	42
90	Stoichiometric Responses to an Agricultural Pesticide Are Modified by Predator Cues. Environmental Science & Environmental Sci	10.0	17

#	Article	IF	Citations
91	Beneficial effects of a heat wave: higher growth and immune components driven by a higher food intake. Journal of Experimental Biology, 2017, 220, 3908-3915.	1.7	17
92	Sexual selection reinforces a higher flight endurance in urban damselflies. Evolutionary Applications, 2017, 10, 694-703.	3.1	22
93	Microgeographic differentiation in thermal performance curves between rural and urban populations of an aquatic insect. Evolutionary Applications, 2017, 10, 1067-1075.	3.1	50
94	Carry-Over Effects Across Metamorphosis of a Pesticide on Female Lifetime Fitness Strongly Depend on Egg Hatching Phenology: A Longitudinal Study under Seminatural Conditions. Environmental Science & Environmental Science	10.0	8
95	Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae. Aquatic Toxicology, 2017, 193, 210-216.	4.0	35
96	Pesticide-induced changes in personality depend on the urbanization level. Animal Behaviour, 2017, 134, 45-55.	1.9	20
97	Daily temperature variation and extreme high temperatures drive performance and biotic interactions in a warming world. Current Opinion in Insect Science, 2017, 23, 35-42.	4.4	65
98	Integrating trait multidimensionality, predation and autotomy to explain the maintenance of boldness. Animal Behaviour, 2017, 130, 97-105.	1.9	8
99	Testing the time-scale dependence of delayed interactions: A heat wave during the egg stage shapes how a pesticide interacts with a successive heat wave in the larval stage. Environmental Pollution, 2017, 230, 351-359.	7.5	8
100	Single and mixture impacts of two pyrethroids on damselfly predatory behavior and physiological biomarkers. Aquatic Toxicology, 2017, 190, 70-77.	4.0	12
101	Low larval densities in northern populations reinforce range expansion by a Mediterranean damselfly. Freshwater Biology, 2016, 61, 1430-1441.	2.4	3
102	Rapid evolution of antioxidant defence in a natural population of <i>Daphnia magna</i> Liv. Journal of Evolutionary Biology, 2016, 29, 1328-1337.	1.7	13
103	Resurrecting complexity: the interplay of plasticity and rapid evolution in the multiple trait response to strong changes in predation pressure in the water flea <i>Daphnia magna</i> . Ecology Letters, 2016, 19, 180-190.	6.4	115
104	Integrating the paceâ€ofâ€life syndrome across species, sexes and individuals: covariation of life history and personality under pesticide exposure. Journal of Animal Ecology, 2016, 85, 726-738.	2.8	57
105	Synthetic predator cues impair immune function and make the biological pesticide <i>Bti</i> more lethal for vector mosquitoes. Ecological Applications, 2016, 26, 355-366.	3.8	26
106	Delayed effects of chlorpyrifos across metamorphosis on dispersal-related traits in a poleward moving damselfly. Environmental Pollution, 2016, 218, 634-643.	7.5	23
107	Spatial Selection and Local Adaptation Jointly Shape Life-History Evolution during Range Expansion. American Naturalist, 2016, 188, 485-498.	2.1	42
108	Exposure to a heat wave under food limitation makes an agricultural insecticide lethal: a mechanistic laboratory experiment. Global Change Biology, 2016, 22, 3361-3372.	9.5	59

#	Article	IF	CITATIONS
109	Rapid evolution of increased vulnerability to an insecticide at the expansion front in a polewardâ€moving damselfly. Evolutionary Applications, 2016, 9, 450-461.	3.1	19
110	Evolution determines how global warming and pesticide exposure will shape predator–prey interactions with vector mosquitoes. Evolutionary Applications, 2016, 9, 818-830.	3.1	27
111	Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Frontiers in Zoology, 2016, 13, 46.	2.0	7 5
112	Metabolic adaptations in a rangeâ€expanding arthropod. Ecology and Evolution, 2016, 6, 6556-6564.	1.9	8
113	Energy storage and fecundity explain deviations from ecological stoichiometry predictions under global warming and sizeâ€selective predation. Journal of Animal Ecology, 2016, 85, 1431-1441.	2.8	39
114	Short- and long-term behavioural, physiological and stoichiometric responses to predation risk indicate chronic stress and compensatory mechanisms. Oecologia, 2016, 181, 347-357.	2.0	57
115	Integrating ecology and evolution in aquatic toxicology: insights from damselflies. Freshwater Science, 2015, 34, 1032-1039.	1.8	31
116	Larval <scp>UV</scp> exposure impairs adult immune function through a tradeâ€off with larval investment in cuticular melanin. Functional Ecology, 2015, 29, 1292-1299.	3.6	49
117	Warming reinforces nonconsumptive predator effects on prey growth, physiology, and body stoichiometry. Ecology, 2015, 96, 3270-3280.	3.2	41
118	Neutral and adaptive genomic signatures of rapid poleward range expansion. Molecular Ecology, 2015, 24, 6163-6176.	3.9	44
119	Genetic signature of the colonisation dynamics along a coastal expansion front in the damselfly <i>Coenagrion scitulum</i> . Ecological Entomology, 2015, 40, 353-361.	2.2	1
120	Ontogenetic changes in genetic variances of age-dependent plasticity along a latitudinal gradient. Heredity, 2015, 115, 366-378.	2.6	32
121	The evolution of thermal performance can constrain dispersal during range shifting. Journal of Biological Dynamics, 2015, 9, 317-335.	1.7	15
122	Combined effects of larval exposure to a heat wave and chlorpyrifos in northern and southern populations of the damselfly Ischnura elegans. Chemosphere, 2015, 128, 148-154.	8.2	31
123	Higher investment in flight morphology does not trade off with fecundity estimates in a poleward rangeâ€expanding damselfly. Ecological Entomology, 2015, 40, 133-142.	2.2	14
124	Urbanisation shapes behavioural responses to a pesticide. Aquatic Toxicology, 2015, 163, 81-88.	4.0	28
125	Empirically simulated spatial sorting points at fast epigenetic changes in dispersal behaviour. Evolutionary Ecology, 2015, 29, 299-310.	1.2	23
126	Warmer winters modulate life history and energy storage but do not affect sensitivity to a widespread pesticide in an aquatic insect. Aquatic Toxicology, 2015, 167, 38-45.	4.0	17

#	Article	IF	CITATIONS
127	The interplay of adult and larval time constraints shapes species differences in larval life history. Ecology, 2015, 96, 1128-1138.	3.2	30
128	Chronic Predation Risk Reduces Escape Speed by Increasing Oxidative Damage: A Deadly Cost of an Adaptive Antipredator Response. PLoS ONE, 2014, 9, e101273.	2.5	39
129	Reinforcing effects of non-pathogenic bacteria and predation risk: from physiology to life history. Oecologia, 2014, 176, 323-332.	2.0	16
130	Unravelling the effects of contemporary and historical range expansion on the distribution of genetic diversity in the damselfly <i>Coenagrion scitulum</i> . Journal of Evolutionary Biology, 2014, 27, 748-759.	1.7	16
131	Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a spaceâ€forâ€time substitution approach. Evolutionary Applications, 2014, 7, 421-430.	3.1	33
132	Temperature―and latitudeâ€specific individual growth rates shape the vulnerability of damselfly larvae to a widespread pesticide. Journal of Applied Ecology, 2014, 51, 919-928.	4.0	77
133	Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential. Evolutionary Applications, 2014, 7, 42-55.	3.1	161
134	What factors shape female phenotypes of a poleward-moving damselfly at the edge of its range?. Biological Journal of the Linnean Society, 2014, 112, 556-568.	1.6	28
135	Extreme temperatures in the adult stage shape delayed effects of larval pesticide stress: A comparison between latitudes. Aquatic Toxicology, 2014, 148, 74-82.	4.0	41
136	Behavioural, physiological and biochemical markers in damselfly larvae (Ischnura elegans) to assess effects of accumulated metal mixtures. Science of the Total Environment, 2014, 470-471, 208-215.	8.0	17
137	Nonâ€pathogenic aquatic bacteria activate the immune system and increase predation risk in damselfly larvae. Freshwater Biology, 2014, 59, 417-426.	2.4	10
138	Integrating largeâ€scale geographic patterns in flight morphology, flight characteristics and sexual selection in a rangeâ€expanding damselfly. Ecography, 2014, 37, 1012-1021.	4.5	20
139	Competitive interactions modify the temperature dependence of damselfly growth rates. Ecology, 2014, 95, 1394-1406.	3.2	20
140	Additive effects of predator cues and dimethoate on different levels of biological organisation in the non-biting midge Chironomus riparius. Aquatic Toxicology, 2014, 155, 236-243.	4.0	8
141	Ecological and evolutionary drivers of range size in <i><scp>C</scp>oenagrion</i> damselflies. Journal of Evolutionary Biology, 2014, 27, 2386-2395.	1.7	34
142	Sexual selection on flight endurance, flight-related morphology and physiology in a scrambling damselfly. Evolutionary Ecology, 2014, 28, 639-654.	1.2	17
143	Increased activity and growth rate in the nonâ€dispersive aquatic larval stage of a damselfly at an expanding range edge. Freshwater Biology, 2014, 59, 1266-1277.	2.4	30
144	Warming increases chlorpyrifos effects on predator but not anti-predator behaviours. Aquatic Toxicology, 2014, 152, 215-221.	4.0	28

#	Article	IF	Citations
145	Can damselfly larvae (Ischnura elegans) be used as bioindicators of sublethal effects of environmental contamination?. Aquatic Toxicology, 2014, 154, 270-277.	4.0	15
146	Rapid evolution of larval life history, adult immune function and flight muscles in a polewardâ€moving damselfly. Journal of Evolutionary Biology, 2014, 27, 141-152.	1.7	46
147	Predator cues magnify effects of the pesticide endosulfan in water bugs in a multi-species test in outdoor containers. Aquatic Toxicology, 2013, 138-139, 116-122.	4.0	20
148	Rapid range expansion increases genetic differentiation while causing limited reduction in genetic diversity in a damselfly. Heredity, 2013, 111, 422-429.	2.6	54
149	Largeâ€scale patterns in genetic variation, gene flow and differentiation in five species of European Coenagrionid damselfly provide mixed support for the centralâ€marginal hypothesis. Ecography, 2013, 36, 744-755.	4.5	29
150	More rapid climate change promotes evolutionary rescue through selection for increased dispersal distance. Evolutionary Applications, 2013, 6, 353-364.	3.1	52
151	Latitudinally structured variation in the temperature dependence of damselfly growth rates. Ecology Letters, 2013, 16, 64-71.	6.4	24
152	Synergistic effects between pesticide stress and predator cues: Conflicting results from life history and physiology in the damselfly Enallagma cyathigerum. Aquatic Toxicology, 2013, 132-133, 92-99.	4.0	52
153	Exposure to a widespread non-pathogenic bacterium magnifies sublethal pesticide effects in the damselfly Enallagma cyathigerum: From the suborganismal level to fitness-related traits. Environmental Pollution, 2013, 177, 143-149.	7. 5	36
154	Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient. Global Change Biology, 2013, 19, 2625-2633.	9.5	84
155	Latitudinal patterns of phenology and age-specific thermal performance across sixCoenagriondamselfly species. Ecological Monographs, 2013, 83, 491-510.	5.4	18
156	Local genetic adaptation generates latitudeâ€specific effects of warming on predator–prey interactions. Global Change Biology, 2013, 19, 689-696.	9.5	67
157	Predation risk causes oxidative damage in prey. Biology Letters, 2013, 9, 20130350.	2.3	79
158	No Trade-Off between Growth Rate and Temperature Stress Resistance in Four Insect Species. PLoS ONE, 2013, 8, e62434.	2.5	6
159	Fitness Effects of Chlorpyrifos in the Damselfly Enallagma cyathigerum Strongly Depend upon Temperature and Food Level and Can Bridge Metamorphosis. PLoS ONE, 2013, 8, e68107.	2.5	35
160	Microsatellite marker development and putative SNP detection for a northward expanding damselfly species using next generation sequencing. Conservation Genetics Resources, 2012, 4, 1079-1084.	0.8	4
161	Evolutionary Ecology of Odonata: A Complex Life Cycle Perspective. Annual Review of Entomology, 2012, 57, 249-265.	11.8	220
162	How does a pesticide pulse increase vulnerability to predation? Combined effects on behavioral antipredator traits and escape swimming. Aquatic Toxicology, 2012, 110-111, 91-98.	4.0	48

#	Article	IF	Citations
163	Generalists and specialists along a latitudinal transect: patterns of thermal adaptation in six species of damselflies. Ecology, 2012, 93, 1340-1352.	3.2	74
164	Species-specific patterns of swimming escape performance and cholinesterase activity in a guild of aquatic insects exposed to endosulfan. Environmental Pollution, 2012, 163, 127-133.	7.5	12
165	Phosphoglucose isomerase genotype effects on life history depend on latitude and food stress. Functional Ecology, 2012, 26, 1120-1126.	3.6	5
166	Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in <i>Ischnura</i> damselfly larvae. Journal of Animal Ecology, 2012, 81, 1034-1040.	2.8	74
167	A crucial step toward realism: responses to climate change from an evolving metacommunity perspective. Evolutionary Applications, 2012, 5, 154-167.	3.1	106
168	Levels of persistent organic pollutants in larvae of the damselfly Ischnura elegans (Odonata,) Tj ETQq0 0 0 rgBT / 423, 162-167.	Overlock : 8.0	10 Tf 50 547 13
169	Species-specific responsiveness of four enzymes to endosulfan and predation risk questions their usefulness as general biomarkers. Ecotoxicology, 2012, 21, 268-279.	2.4	18
170	Biogeographical Survey Identifies Consistent Alternative Physiological Optima and a Minor Role for Environmental Drivers in Maintaining a Polymorphism. PLoS ONE, 2012, 7, e32648.	2.5	11
171	Rapid Growth Reduces Cold Resistance: Evidence from Latitudinal Variation in Growth Rate, Cold Resistance and Stress Proteins. PLoS ONE, 2011, 6, e16935.	2.5	66
172	Habitat isolation shapes the recovery of aquatic insect communities from a pesticide pulse. Journal of Applied Ecology, 2011, 48, 1480-1489.	4.0	35
173	The interplay of past and current stress exposure on the water flea Daphnia. Functional Ecology, 2011, 25, 974-982.	3.6	25
174	Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function. Global Change Biology, 2011, 17, 676-687.	9.5	120
175	Latitudinal and voltinism compensation shape thermal reaction norms for growth rate. Molecular Ecology, 2011, 20, 2929-2941.	3.9	87
176	Effects of speciesâ€specific interactions with predation risk on the relative species sensitivities to a pesticide in water boatmen (Corixidae). Oikos, 2011, 120, 897-905.	2.7	11
177	COLLATERAL DAMAGE: RAPID EXPOSURE-INDUCED EVOLUTION OF PESTICIDE RESISTANCE LEADS TO INCREASED SUSCEPTIBILITY TO PARASITES. Evolution; International Journal of Organic Evolution, 2011, 65, 2681-2691.	2.3	61
178	Range limits, large-scale biogeographic variation, and localized evolutionary dynamics in a polymorphic damselfly. Biological Journal of the Linnean Society, 2011, 102, 775-785.	1.6	60
179	Evolutionary ecotoxicology of pesticide resistance: a case study in Daphnia. Ecotoxicology, 2011, 20, 543-551.	2.4	96
180	Fish predation selects for reduced foraging activity. Behavioral Ecology and Sociobiology, 2011, 65, 241-247.	1.4	47

#	Article	IF	Citations
181	Phenoloxidase but not lytic activity reflects resistance against <i>Pasteuria ramosa</i> in <i>Daphnia magna</i> . Biology Letters, 2011, 7, 156-159.	2.3	21
182	Thermal Genetic Adaptation in the Water Flea Daphnia and its Impact: An Evolving Metacommunity Approach. Integrative and Comparative Biology, 2011, 51, 703-718.	2.0	39
183	Rapid evolution of phenoloxidase expression, a component of innate immune function, in a natural population of <i>Daphnia magna</i> . Limnology and Oceanography, 2010, 55, 1408-1413.	3.1	14
184	No evidence for a cost of selection by carbaryl exposure in terms of vulnerability to fish predation in Daphnia magna. Hydrobiologia, 2010, 643, 123-128.	2.0	8
185	PREDATOR-DRIVEN TRAIT DIVERSIFICATION IN A DRAGONFLY GENUS: COVARIATION IN BEHAVIORAL AND MORPHOLOGICAL ANTIPREDATOR DEFENSE. Evolution; International Journal of Organic Evolution, 2010, 64, 3327-3335.	2.3	33
186	Survival selection imposed by predation on a physiological trait underlying escape speed. Functional Ecology, 2010, 24, 1306-1312.	3.6	33
187	Local exposure shapes spatial patterns in infectivity and community structure of <i>Daphnia</i> parasites. Journal of Animal Ecology, 2010, 79, 1023-1033.	2.8	12
188	Enhanced antiâ€predator defence in the presence of food stress in the water flea <i>Daphnia magna</i> Functional Ecology, 2010, 24, 322-329.	3.6	51
189	Experimental thermal microevolution in community-embedded Daphnia populations. Climate Research, 2010, 43, 81-89.	1.1	57
190	Behavioural activity levels and expression of stress proteins under predation risk in two damselfly species. Ecological Entomology, 2009, 34, 297-303.	2.2	19
191	Female morphs of a colour polymorphic damselfly differ in developmental instability and fecundity. Animal Biology, 2009, 59, 41-54.	1.0	9
192	Morphological and physiological sexual selection targets in a territorial damselfly. Ecological Entomology, 2009, 34, 677-683.	2.2	18
193	Food level and sex shape predator-induced physiological stress: immune defence and antioxidant defence. Oecologia, 2009, 161, 461-467.	2.0	44
194	Local adaptation to higher temperatures reduces immigration success of genotypes from a warmer region in the water flea <i>Daphnia</i> . Global Change Biology, 2009, 15, 3046-3055.	9.5	66
195	POPULATION DYNAMICS DETERMINE GENETIC ADAPTATION TO TEMPERATURE IN <i>DAPHNIA</i> I). Evolution; International Journal of Organic Evolution, 2009, 63, 1867-1878.	2.3	81
196	Survival selection on escape performance and its underlying phenotypic traits: a case of manyâ€toâ€one mapping. Journal of Evolutionary Biology, 2009, 22, 1172-1182.	1.7	43
197	Autotomy reduces immune function and antioxidant defence. Biology Letters, 2009, 5, 90-92.	2.3	26
198	Seasonal dynamics in water quality and vegetation cover in temporary pools with variable hydroperiods in Kiskuns \tilde{A}_i g (Hungary). Wetlands, 2008, 28, 401-410.	1.5	28

#	Article	IF	Citations
199	LIFE-HISTORY EVOLUTION WHEN LESTES DAMSELFLIES INVADED VERNAL PONDS. Evolution; International Journal of Organic Evolution, 2008, 62, 485-493.	2.3	23
200	Life history plasticity to combined time and biotic constraints in <i>Lestes</i> damselflies from vernal and temporary ponds. Oikos, 2008, 117, 908-916.	2.7	26
201	Metamorphosis offsets the link between larval stress, adult asymmetry and individual quality. Functional Ecology, 2008, 22, 271-277.	3 . 6	48
202	Predation risk induces stress proteins and reduces antioxidant defense. Functional Ecology, 2008, 22, 637-642.	3.6	192
203	Correcting the shortâ€term effect of food deprivation in a damselfly: mechanisms and costs. Journal of Animal Ecology, 2008, 77, 66-73.	2.8	50
204	Shortâ€ŧerm larval food stress and associated compensatory growth reduce adult immune function in a damselfly. Ecological Entomology, 2008, 33, 796-801.	2.2	84
205	Size-selective dispersal of <i>Daphnia</i> resting eggs by backswimmers (<i>Notonecta maculata</i>). Biology Letters, 2008, 4, 494-496.	2.3	40
206	Developmental costs of rapid growth in a damselfly. Ecological Entomology, 2008, 33, 313-318.	2.2	41
207	Stronger compensatory growth in a permanentâ€pond <i>Lestes</i> damselfly relative to temporaryâ€pond <i>Lestes</i> Oikos, 2008, 117, 245-254.	2.7	28
208	Integrating life history and physiology to understand latitudinal size variation in a damselfly. Ecography, 2008, 31, 115-123.	4.5	63
209	Compensatory growth and oxidative stress in a damselfly. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 781-785.	2.6	168
210	Mark–recapture studies and demography. , 2008, , 7-20.		62
211	Life-history plasticity under time stress in damselfly larvae. , 2008, , 39-50.		23
212	Seasonal and diurnal variation in the proportions of female morphs of the damselfly Enallagma cyathigerum. Animal Biology, 2007, 57, 217-230.	1.0	4
213	Evolution of Heat Shock Protein Expression in a Natural Population of <i>Daphnia magna</i> American Naturalist, 2007, 170, 800-805.	2.1	37
214	SUBLETHAL PESTICIDE CONCENTRATIONS AND PREDATION JOINTLY SHAPE LIFE HISTORY: BEHAVIORAL AND PHYSIOLOGICAL MECHANISMS. Ecological Applications, 2007, 17, 2111-2122.	3.8	88
215	Winter compensatory growth under field conditions partly offsets low energy reserves before winter in a damselfly. Oikos, 2007, 116, 1975-1982.	2.7	32
216	METACOMMUNITY STRUCTURE OF POND MACROINVERTEBRATES: EFFECTS OF DISPERSAL MODE AND GENERATION TIME. Ecology, 2007, 88, 1687-1695.	3.2	75

#	Article	IF	Citations
217	Ecological relevance and sensitivity depending on the exposure time for two biomarkers. Environmental Toxicology, 2007, 22, 572-581.	4.0	21
218	Host–parasite â€~Red Queen' dynamics archived in pond sediment. Nature, 2007, 450, 870-873.	27.8	537
219	Adaptive microevolutionary responses to simulated global warming in <i>Simocephalus vetulus</i> : a mesocosm study. Global Change Biology, 2007, 13, 878-886.	9.5	55
220	Flight-related body morphology shapes mating success in a damselfly. Animal Behaviour, 2007, 74, 1093-1098.	1.9	32
221	Biochemical adaptation for dormancy in subitaneous and dormant eggs of Daphnia magna. Hydrobiologia, 2007, 594, 91-96.	2.0	25
222	Lotic dispersal of lentic macroinvertebrates. Ecography, 2006, 29, 223-230.	4.5	37
223	PHYSIOLOGICAL COSTS OF COMPENSATORY GROWTH IN A DAMSELFLY. Ecology, 2006, 87, 1566-1574.	3.2	161
224	TIME CONSTRAINTS MEDIATE PREDATOR-INDUCED PLASTICITY IN IMMUNE FUNCTION, CONDITION, AND LIFE HISTORY. Ecology, 2006, 87, 809-815.	3.2	126
225	INVERTEBRATE PREDATION SELECTS FOR THE LOSS OF A MORPHOLOGICAL ANTIPREDATOR TRAIT. Evolution; International Journal of Organic Evolution, 2006, 60, 1306.	2.3	2
226	INVERTEBRATE PREDATION SELECTS FOR THE LOSS OF A MORPHOLOGICAL ANTIPREDATOR TRAIT. Evolution; International Journal of Organic Evolution, 2006, 60, 1306-1310.	2.3	51
227	Behavioural Correlations May Cause Partial Support for the Risk Allocation Hypothesis in Damselfly Larvae. Ethology, 2006, 112, 143-151.	1.1	19
228	Behavioral responses to fish kairomones and autotomy in a damselfly. Journal of Ethology, 2006, 24, 79-83.	0.8	16
229	A Tale of Two Diversifications: Reciprocal Habitat Shifts to Fill Ecological Space along the Pond Permanence Gradient. American Naturalist, 2006, 168, S50-S72.	2.1	85
230	Alternative growth and energy storage responses to mortality threats in damselflies. Ecology Letters, 2005, 8, 1307-1316.	6.4	96
231	Threat-Sensitive Responses to Predator Attacks in a Damselfly. Ethology, 2005, 111, 411-423.	1.1	57
232	Predation cost of rapid growth: behavioural coupling and physiological decoupling. Journal of Animal Ecology, 2005, 74, 708-715.	2.8	198
233	Rapid response of macroinvertebrates to drainage management of shallow connected lakes. Journal of Applied Ecology, 2005, 43, 51-60.	4.0	15
234	Thermal reaction norms in twoCoenagriondamselfly species: contrasting embryonic and larval life-history traits. Freshwater Biology, 2005, 50, 1982-1990.	2.4	20

#	Article	IF	Citations
235	Growth rate plasticity to temperature in two damselfly species differing in latitude: contributions of behaviour and physiology. Oikos, 2005, 111, 599-605.	2.7	47
236	PARALLEL EVOLUTION IN ECOLOGICAL AND REPRODUCTIVE TRAITS TO PRODUCE CRYPTIC DAMSELFLY SPECIES ACROSS THE HOLARCTIC. Evolution; International Journal of Organic Evolution, 2005, 59, 1976-1988.	2.3	42
237	Pond drying and hatching date shape the tradeoff between age and size at emergence in a damselfly. Oikos, 2005, 108, 485-494.	2.7	37
238	Lifetime fitness components in female colour morphs of a damselfly: density- or frequency-dependent selection?. Biological Journal of the Linnean Society, 2005, 86, 515-523.	1.6	13
239	Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems, 2005, 15, 715-725.	2.0	352
240	Spatial avoidance of littoral and pelagic invertebrate predators by Daphnia. Oecologia, 2005, 142, 489-499.	2.0	30
241	Water turbidity affects predator–prey interactions in a fish–damselfly system. Oecologia, 2005, 144, 327-336.	2.0	56
242	Spatiotemporal allozyme variation in the damselfly, Lestes viridis (Odonata: Zygoptera): gene flow among permanent and temporary ponds. Genetica, 2005, 124, 137-144.	1.1	20
243	The effect of turbidity state and microhabitat on macroinvertebrate assemblages: a pilot study of six shallow lakes. Hydrobiologia, 2005, 542, 379-390.	2.0	33
244	Egg hatching patterns within and among populations of a damselfly occupying permanent and temporary ponds. Archiv FÃ $\frac{1}{4}$ r Hydrobiologie, 2005, 163, 195-209.	1.1	13
245	The effect of turbidity state and microhabitat on macroinvertebrate assemblages: a pilot study of six shallow lakes. Hydrobiologia, 2005, 542, 379-390.	2.0	0
246	PARALLEL EVOLUTION IN ECOLOGICAL AND REPRODUCTIVE TRAITS TO PRODUCE CRYPTIC DAMSELFLY SPECIES ACROSS THE HOLARCTIC. Evolution; International Journal of Organic Evolution, 2005, 59, 1976.	2.3	6
247	The effect of turbidity state and microhabitat on macroinvertebrate assemblages: a pilot study of six shallow lakes. , 2005, , 379-390.		5
248	FITNESS EFFECTS FROM EGG TO REPRODUCTION: BRIDGING THE LIFE HISTORY TRANSITION. Ecology, 2005, 86, 185-197.	3.2	193
249	Simultaneous Quaternary Radiations of Three Damselfly Clades across the Holarctic. American Naturalist, 2005, 165, E78-E107.	2.1	100
250	Reversible switches between male–male and male–female mating behaviour by male damselflies. Biology Letters, 2005, 1, 268-270.	2.3	42
251	Parallel evolution in ecological and reproductive traits to produce cryptic damselfly species across the holarctic. Evolution; International Journal of Organic Evolution, 2005, 59, 1976-88.	2.3	7
252	Life history responses depend on timing of cannibalism in a damselfly. Freshwater Biology, 2004, 49, 775-786.	2.4	17

#	Article	IF	Citations
253	Life history reaction norms to time constraints in a damselfly: differential effects on size and mass. Biological Journal of the Linnean Society, 2004, 83, 187-196.	1.6	57
254	Cannibalism-mediated life history plasticity to combined time and food stress. Oikos, 2004, 106, 587-597.	2.7	59
255	Behavioral linkage of pelagic prey and littoral predators: microhabitat selection byDaphniainduced by damselfly larvae. Oikos, 2004, 107, 265-272.	2.7	30
256	Life-history variation in relation to time constraints in a damselfly. Oecologia, 2004, 140, 68-75.	2.0	60
257	Time Constraints Decouple Age and Size at Maturity and Physiological Traits. American Naturalist, 2004, 164, 559-565.	2.1	75
258	Sex- and morph-specific predation risk: Colour or behaviour dependency?. European Journal of Entomology, 2004, 101, 373-377.	1.2	8
259	ANTIPREDATOR BEHAVIOR AND PHYSIOLOGY DETERMINE LESTES SPECIES TURNOVER ALONG THE POND-PERMANENCE GRADIENT. Ecology, 2003, 84, 3327-3338.	3.2	80
260	PREDATORS AND LIFE HISTORIES SHAPE LESTES DAMSELFLY ASSEMBLAGES ALONG A FRESHWATER HABITAT GRADIENT. Ecology, 2003, 84, 1576-1587.	3.2	119
261	Discriminative mate choice in relation with female maturation in < i > lschnura elegans < / i > (Odonata:) Tj ETQq $1\ 1\ 0$.784314 rg	gBT ₁₁ /Overloc
262	Frequency-dependent male mate harassment and intra-specific variation in its avoidance by females of the damselfly Ischnura elegans. Behavioral Ecology and Sociobiology, 2001, 51, 69-75.	1.4	92
263	Food stress and predator-induced stress shape developmental performance in a damselfly. Oecologia, 2001, 127, 222-229.	2.0	98
264	What causes male-biased sex ratios in mature damselfly populations?. Ecological Entomology, 2001, 26, 188-197.	2.2	37
265	LIFE HISTORY PLASTICITY IN A DAMSELFLY: EFFECTS OF COMBINED TIME AND BIOTIC CONSTRAINTS. Ecology, 2001, 82, 1857-1869.	3.2	175
266	Reversible frequency–dependent switches in male mate choice. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 83-85.	2.6	100
267	Male-biased sex ratios in mature damselfly populations: real or artefact?. Ecological Entomology, 2001, 26, 181-187.	2.2	40
268	Life History Plasticity in a Damselfly: Effects of Combined Time and Biotic Constraints. Ecology, 2001, 82, 1857.	3.2	12
269	Trading off mortality risk against foraging effort in damselflies that differ in life cycle length. Oikos, 2000, 91, 559-567.	2.7	52
270	Genetic differentiation and dispersal among populations of the damselfly Lestes viridis (Odonata). Journal of the North American Benthological Society, 2000, 19, 321-328.	3.1	21

ROBBY STOKS

#	Article	IF	CITATIONS
271	The influence of predator species and prey age on the immediate survival value of antipredator behaviours in a damselfly Fundamental and Applied Limnology, 2000, 147, 417-430.	0.7	37
272	The effect of lamellae autotomy and sexual size dimorphism on startle-response performance in larvae of a lestid damselfly (Odonata). Journal of Zoology, 1999, 247, 269-273.	1.7	19
273	Male choice for female colour morphs in Ischnura elegans (Odonata, Coenagrionidae): testing the hypotheses. Animal Behaviour, 1999, 57, 1229-1232.	1.9	68
274	Phenotypic shifts caused by predation: selection or life-history shifts?. Evolutionary Ecology, 1999, 13, 115-129.	1.2	15
275	Autotomy shapes the trade-off between seeking cover and foraging in larval damselflies. Behavioral Ecology and Sociobiology, 1999, 47, 70-75.	1.4	47
276	Lethal and sublethal costs of autotomy and predator presence in damselfly larvae. Oecologia, 1999, 120, 87-91.	2.0	26
277	Effect of lamellae autotomy on survival and foraging success of the damselfly Lestes sponsa (Odonata: Lestidae). Oecologia, 1998, 117, 443-448.	2.0	54
278	Indirect Monitoring of Agonistic Encounters in Larvae of Lestes viridis (Odonata: Lestidae) Using Exuviae Lamellae Status. Aquatic Insects, 1998, 20, 173-180.	0.9	18
279	The adaptiveness of intense contact mate guarding by males of the emerald damselfly,Lestes sponsa (Odonata, Lestidae): The male's perspective. Journal of Insect Behavior, 1997, 10, 289-298.	0.7	19