
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9158527/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Neoproterozoic Snowball Earth. , 1998, 281, 1342-1346.                                                                                                                                                                                                        |      | 2,174     |
| 2  | A Whiff of Oxygen Before the Great Oxidation Event?. Science, 2007, 317, 1903-1906.                                                                                                                                                                             | 12.6 | 822       |
| 3  | The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology, 1999, 161, 103-125.                                                                             | 3.3  | 700       |
| 4  | The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 1999, 161, 37-57.                                                                                                                                                              | 3.3  | 616       |
| 5  | Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes. Geochimica Et Cosmochimica Acta, 1992, 56, 1317-1329.                                                                                       | 3.9  | 520       |
| 6  | Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the United States of America, 2008, 105, 3197-3202.                                                                                                             | 7.1  | 507       |
| 7  | The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth and Planetary Science Letters, 1993, 120, 409-430.                                                                                           | 4.4  | 441       |
| 8  | Experimental measurement of boron isotope fractionation in seawater. Earth and Planetary Science<br>Letters, 2006, 248, 276-285.                                                                                                                                | 4.4  | 348       |
| 9  | Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a<br>large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters, 2007, 261, 303-320.                                                      | 4.4  | 341       |
| 10 | Late Archean Biospheric Oxygenation and Atmospheric Evolution. Science, 2007, 317, 1900-1903.                                                                                                                                                                   | 12.6 | 327       |
| 11 | lsotopic compositions of carbonates and organic carbon from upper Proterozoic successions in<br>Namibia: stratigraphic variation and the effects of diagenesis and metamorphism. Precambrian<br>Research, 1991, 49, 301-327.                                    | 2.7  | 284       |
| 12 | lsotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature,<br>2007, 449, 706-709.                                                                                                                                            | 27.8 | 261       |
| 13 | Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern<br>Canada: Implications for Neoproterozoic correlations and the early evolution of animals. Bulletin of<br>the Geological Society of America, 1994, 106, 1281-1292. | 3.3  | 259       |
| 14 | Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition. Geology, 2009, 37, 399-402.                                                                                                                                                 | 4.4  | 247       |
| 15 | The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball<br>Earth?. Earth and Planetary Science Letters, 2002, 203, 413-429.                                                                                             | 4.4  | 240       |
| 16 | Pervasive oxygenation along late Archaean ocean margins. Nature Geoscience, 2010, 3, 647-652.                                                                                                                                                                   | 12.9 | 233       |
| 17 | Active Microbial Sulfur Disproportionation in the Mesoproterozoic. Science, 2005, 310, 1477-1479.                                                                                                                                                               | 12.6 | 215       |
| 18 | lsotopic Evidence for an Aerobic Nitrogen Cycle in the Latest Archean. Science, 2009, 323, 1045-1048.                                                                                                                                                           | 12.6 | 214       |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: evidence for a post-Marinoan<br>glaciation. Precambrian Research, 2004, 130, 1-26.                                                                                   | 2.7  | 213       |
| 20 | δ <sup>13</sup> C stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: implications<br>for regional lithostratigraphic correlations. Canadian Journal of Earth Sciences, 1999, 36, 313-332.                      | 1.3  | 183       |
| 21 | Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley,<br>California. Bulletin of the Geological Society of America, 2003, 115, 916-932.                                              | 3.3  | 176       |
| 22 | Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth and Planetary Science Letters, 2009, 279, 383-391.                                                                | 4.4  | 173       |
| 23 | Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a<br>biostratigraphic conundrum from the North China Platform. Precambrian Research, 1997, 84, 197-220.                                            | 2.7  | 172       |
| 24 | High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils.<br>Nature, 2003, 425, 279-282.                                                                                                     | 27.8 | 164       |
| 25 | Global events across the Mesoproterozoic–Neoproterozoic boundary: C and Sr isotopic evidence<br>from Siberia. Precambrian Research, 2001, 111, 165-202.                                                                              | 2.7  | 163       |
| 26 | The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the<br>Neoproterozoic Johnnie Formation, Death Valley, USA. Chemical Geology, 2007, 237, 47-63.                                                    | 3.3  | 150       |
| 27 | A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia:<br>Prelude to snowball Earth?. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-24.                                                | 2.5  | 141       |
| 28 | Integrated chronostratigraphy of Proterozoic–Cambrian boundary beds in the western Anabar<br>region, northern Siberia. Geological Magazine, 1996, 133, 509-533.                                                                      | 1.5  | 134       |
| 29 | Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions:<br>Upper Tindir Group, northwestern Canada, as a test case. Geology, 1992, 20, 181.                                                   | 4.4  | 130       |
| 30 | Primary and diagenetic controls of isotopic compositions of iron-formation carbonates. Geochimica<br>Et Cosmochimica Acta, 1990, 54, 3461-3473.                                                                                      | 3.9  | 127       |
| 31 | Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India. Precambrian Research, 2006, 147, 156-185.                                                                              | 2.7  | 127       |
| 32 | Extensive marine anoxia during the terminal Ediacaran Period. Science Advances, 2018, 4, eaan8983.                                                                                                                                   | 10.3 | 126       |
| 33 | A unifying model for Neoproterozoic–Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression. Nature Communications, 2014, 5, 5754.                                                              | 12.8 | 120       |
| 34 | Biomarker Evidence for Photosynthesis During Neoproterozoic Glaciation. Science, 2005, 310, 471-474.                                                                                                                                 | 12.6 | 119       |
| 35 | Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from<br>methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China.<br>Chemical Geology, 2017, 450, 59-80. | 3.3  | 115       |
| 36 | Oxidation of pyrite during extraction of carbonate associated sulfate. Chemical Geology, 2008, 247, 124-132.                                                                                                                         | 3.3  | 114       |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Re-evaluating boron speciation in biogenic calcite and aragonite using 11B MAS NMR. Geochimica Et<br>Cosmochimica Acta, 2009, 73, 1890-1900.                                                                                                                      | 3.9  | 113       |
| 38 | Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: Insights from carbonates of northwestern Mexico and eastern California. Earth and Planetary Science Letters, 2012, 339-340, 79-94.                                           | 4.4  | 112       |
| 39 | Chemostratigraphic correlation of Neoproterozoic successions in South America. Chemical Geology, 2007, 237, 143-167.                                                                                                                                              | 3.3  | 107       |
| 40 | Redox architecture of an Ediacaran ocean margin: Integrated chemostratigraphic<br>(δ13C‴´Î´34S‴´87Sr/86Sr‴`Ce/Ce*) correlation of the Doushantuo Formation, South China. Chemical<br>Geology, 2015, 405, 48-62.                                                   | 3.3  | 98        |
| 41 | Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites. Geochimica Et Cosmochimica Acta, 2016, 186, 316-343.                                                                                          | 3.9  | 98        |
| 42 | Integrated chemostratigraphy of the Doushantuo Formation at the northern Xiaofenghe section<br>(Yangtze Gorges, South China) and its implication for Ediacaran stratigraphic correlation and ocean<br>redox models. Precambrian Research, 2012, 192-195, 125-141. | 2.7  | 93        |
| 43 | Stratification and mixing of a post-glacial Neoproterozoic ocean: Evidence from carbon and sulfur<br>isotopes in a cap dolostone from northwest China. Earth and Planetary Science Letters, 2008, 265,<br>209-228.                                                | 4.4  | 89        |
| 44 | Evidence of magnetic isotope effects during thermochemical sulfate reduction. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17635-17638.                                                                            | 7.1  | 85        |
| 45 | Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction. Science, 2014, 346, 742-744.                                                                                                                                          | 12.6 | 83        |
| 46 | Carbonate platform growth and cyclicity at a terminal Proterozoic passive margin, Infra Krol<br>Formation and Krol Group, Lesser Himalaya, India. Sedimentology, 2003, 50, 921-952.                                                                               | 3.1  | 82        |
| 47 | Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles. Precambrian<br>Research, 2009, 169, 58-67.                                                                                                                                   | 2.7  | 81        |
| 48 | Oxidative forcing of global climate change: A biogeochemical record across the oldest<br>Paleoproterozoic ice age in North America. Earth and Planetary Science Letters, 2007, 258, 486-499.                                                                      | 4.4  | 79        |
| 49 | Biostratigraphic and chemostratigraphic constraints on the age of early Neoproterozoic carbonate successions in North China. Precambrian Research, 2014, 246, 208-225.                                                                                            | 2.7  | 77        |
| 50 | Title is missing!. Bulletin of the Geological Society of America, 1996, 108, 0992.                                                                                                                                                                                | 3.3  | 76        |
| 51 | Environmental and diagenetic variations in carbonate associated sulfate: An investigation of CAS in the Lower Triassic of the western USA. Geochimica Et Cosmochimica Acta, 2008, 72, 1570-1582.                                                                  | 3.9  | 76        |
| 52 | Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates. Geochimica Et Cosmochimica Acta, 2015, 164, 333-351.                                                                            | 3.9  | 75        |
| 53 | Sizing up the sub-Tommotian unconformity in Siberia. Geology, 1995, 23, 1139.                                                                                                                                                                                     | 4.4  | 74        |
| 54 | Carbon and sulfur isotope chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam<br>Basin, NW China: Basin stratification in the aftermath of an Ediacaran glaciation postdating the<br>Shuram event?. Precambrian Research, 2010, 177, 241-252.     | 2.7  | 70        |

| #  | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Sulfur isotope biogeochemistry of the Proterozoic McArthur Basin. Geochimica Et Cosmochimica<br>Acta, 2008, 72, 4278-4290.                                                                                                                                                    | 3.9  | 67        |
| 56 | Extraction of Hydrocarbons from High-Maturity Marcellus Shale Using Supercritical Carbon Dioxide.<br>Energy & Fuels, 2015, 29, 7897-7909.                                                                                                                                     | 5.1  | 65        |
| 57 | Stratigraphic and tectonic implications of field and isotopic constraints on depositional ages of<br>Proterozoic Lesser Himalayan rocks in central Nepal. Precambrian Research, 2011, 185, 1-17.                                                                              | 2.7  | 64        |
| 58 | Phosphogenesis associated with the Shuram Excursion: Petrographic and geochemical observations from the Ediacaran Doushantuo Formation of South China. Sedimentary Geology, 2016, 341, 134-146.                                                                               | 2.1  | 62        |
| 59 | Uranium isotope evidence for limited euxinia in mid-Proterozoic oceans. Earth and Planetary Science<br>Letters, 2019, 521, 150-157.                                                                                                                                           | 4.4  | 61        |
| 60 | Onset of oxidative weathering of continents recorded in the geochemistry of ancient glacial diamictites. Earth and Planetary Science Letters, 2014, 408, 87-99.                                                                                                               | 4.4  | 59        |
| 61 | Identification of sources and formation processes of atmospheric sulfate by sulfur isotope and scanning electron microscope measurements. Journal of Geophysical Research, 2010, 115, .                                                                                       | 3.3  | 58        |
| 62 | Radiometric and stratigraphic constraints on terminal Ediacaran (post-Gaskiers) glaciation and metazoan evolution. Precambrian Research, 2010, 182, 402-412.                                                                                                                  | 2.7  | 57        |
| 63 | Redox-dependent distribution of early macro-organisms: Evidence from the terminal Ediacaran<br>Khatyspyt Formation in Arctic Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461,<br>122-139.                                                               | 2.3  | 57        |
| 64 | Ultrastructural and Geochemical Characterization of Archean–Paleoproterozoic Graphite Particles:<br>Implications for Recognizing Traces of Life in Highly Metamorphosed Rocks. Astrobiology, 2007, 7,<br>684-704.                                                             | 3.0  | 51        |
| 65 | Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: Evidence from triple oxygen isotopes. Geology, 2014, 42, 815-818.                                                                                                      | 4.4  | 49        |
| 66 | Re–Os age constraints and new observations of Proterozoic glacial deposits in the Vazante Group,<br>Brazil. Precambrian Research, 2013, 238, 199-213.                                                                                                                         | 2.7  | 48        |
| 67 | Sedimentology and chemostratigraphy of the terminal Ediacaran Dengying Formation at the<br>Gaojiashan section, South China. Geological Magazine, 2019, 156, 1924-1948.                                                                                                        | 1.5  | 48        |
| 68 | Stratigraphy, palaeontology and geochemistry of the late Neoproterozoic Aar Member, southwest<br>Namibia: Reflecting environmental controls on Ediacara fossil preservation during the terminal<br>Proterozoic in African Gondwana. Precambrian Research, 2013, 238, 214-232. | 2.7  | 45        |
| 69 | Chemostratigraphy of predominantly siliciclastic Neoproterozoic successions: a case study of the<br>Pocatello Formation and Lower Brigham Group, Idaho, USA. Geological Magazine, 1994, 131, 301-314.                                                                         | 1.5  | 44        |
| 70 | Geochemical and mineralogic effects of contact metamorphism on banded iron-formation: an example<br>from the Transvaal Basin, South Africa. Precambrian Research, 1996, 79, 171-194.                                                                                          | 2.7  | 44        |
| 71 | Transient marine euxinia at the end of the terminal Cryogenian glaciation. Nature Communications, 2018, 9, 3019.                                                                                                                                                              | 12.8 | 41        |
| 72 | An ice age in the tropics. Nature, 1997, 386, 227-228.                                                                                                                                                                                                                        | 27.8 | 40        |

| #  | Article                                                                                                                                                                                                                            | IF               | CITATIONS          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 73 | Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation. Geochimica Et Cosmochimica Acta, 2011, 75, 1357-1373.                                   | 3.9              | 40                 |
| 74 | Sulfur isotope constraints on marine transgression in the lacustrine Upper Cretaceous Songliao<br>Basin, northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 451, 152-163.                                | 2.3              | 40                 |
| 75 | lsotope stratigraphy of the Lapa Formation, São Francisco Basin, Brazil: Implications for Late<br>Neoproterozoic glacial events in South America. Precambrian Research, 2006, 149, 231-248.                                        | 2.7              | 39                 |
| 76 | Experimental evaluation of the isotopic exchange equilibrium<br>10B(OH)3+11B(OH)4â^'=11B(OH)3+10B(OH)4â^' in aqueous solution. Deep-Sea Research Part I: Oceanographic<br>Research Papers, 2006, 53, 684-688.                      | 1.4              | 35                 |
| 77 | Local δ34S variability in â^¼580Ma carbonates of northwestern Mexico and the Neoproterozoic marine sulfate reservoir. Precambrian Research, 2013, 224, 551-569.                                                                    | 2.7              | 35                 |
| 78 | Proterozoic carbonates of the Vindhyan Basin, India: Chemostratigraphy and diagenesis. Gondwana<br>Research, 2018, 57, 10-25.                                                                                                      | 6.0              | 33                 |
| 79 | The Neoproterozoic Hüttenberg Î13C anomaly: Genesis and global implications. Precambrian Research, 2018, 313, 242-262.                                                                                                             | 2.7              | 30                 |
| 80 | Integrated Ediacaran chronostratigraphy, Wernecke Mountains, northwestern Canada. Precambrian<br>Research, 2004, 132, 1-27.                                                                                                        | 2.7              | 26                 |
| 81 | Carbon and nitrogen isotopic analysis of Pleistocene mammals from the Saltville Quarry (Virginia,) Tj ETQq1 1 0.78<br>2007, 249, 271-282.                                                                                          | 34314 rgB<br>2.3 | 3T /Overlock<br>25 |
| 82 | Quo vadis, Tommotian?. Geological Magazine, 2020, 157, 22-34.                                                                                                                                                                      | 1.5              | 23                 |
| 83 | Deposition or diagenesis? Probing the Ediacaran Shuram excursion in South China by SIMS. Global and Planetary Change, 2021, 206, 103591.                                                                                           | 3.5              | 23                 |
| 84 | Paleo-climatic and paleo-environmental evolution of the Neoproterozoic basal sedimentary cover on<br>the RÃo de La Plata Craton, Argentina: Insights from the l´13C chemostratigraphy. Sedimentary Geology,<br>2017, 353, 139-157. | 2.1              | 22                 |
| 85 | Using Chemostratigraphy to Correlate and Calibrate Unconformities in Neoproterozoic Strata from the Southern Great Basin of the United States. International Geology Review, 2000, 42, 516-533.                                    | 2.1              | 21                 |
| 86 | Cyanobacteria at work. Nature Geoscience, 2014, 7, 253-254.                                                                                                                                                                        | 12.9             | 21                 |
| 87 | Paleoenvironmental implications of two phosphogenic events in Neoproterozoic sedimentary successions of the Tandilia System, Argentina. Precambrian Research, 2014, 252, 88-106.                                                   | 2.7              | 21                 |
| 88 | Chapter 48 Neoproterozoic successions of the São Francisco Craton, Brazil: the BambuÃ <del>,</del> Una, Vazante<br>and Vaza Barris/Miaba groups and their glaciogenic deposits. Geological Society Memoir, 2011, 36,<br>509-522.   | 1.7              | 20                 |
| 89 | Preglacial palaeoenvironmental evolution of the Ediacaran Loma Negra Formation, far southwestern<br>Gondwana, Argentina. Precambrian Research, 2018, 315, 120-137.                                                                 | 2.7              | 20                 |
| 90 | Heavy cosmic-ray exposure of Apollo astronauts. Science, 1975, 187, 263-265.                                                                                                                                                       | 12.6             | 19                 |

| #   | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Strontium isotope stratigraphy of the Gabbs Formation (Nevada): implications for global<br>Norian–Rhaetian correlations and faunal turnover. Lethaia, 2014, 47, 500-511.                                                                | 1.4  | 19        |
| 92  | The relationship between the Neoproterozoic Noonday Dolomite and the Ibex Formation: New observations and their bearing on †̃snowball Earth'. Earth-Science Reviews, 2005, 73, 63-78.                                                   | 9.1  | 18        |
| 93  | Sulfur isotope and chemical compositions of the wet precipitation in two major urban areas, Seoul<br>and Busan, Korea. Journal of Asian Earth Sciences, 2014, 79, 415-425.                                                              | 2.3  | 18        |
| 94  | Effects of bioturbation on carbon and sulfur cycling across the Ediacaran–Cambrian transition at the GSSP in Newfoundland, Canada. Canadian Journal of Earth Sciences, 2018, 55, 1240-1252.                                             | 1.3  | 18        |
| 95  | Primary or secondary? A dichotomy of the strontium isotope anomalies in the Ediacaran carbonates of<br>Saudi Arabia. Precambrian Research, 2020, 343, 105720.                                                                           | 2.7  | 18        |
| 96  | Sedimentological and mineralogical records from drill core SKD1 in the Jianghan Basin, Central<br>China, and their implications for late Cretaceous–early Eocene climate change. Journal of Asian Earth<br>Sciences, 2019, 182, 103936. | 2.3  | 17        |
| 97  | Using SIMS to decode noisy stratigraphic δ13C variations in Ediacaran carbonates. Precambrian<br>Research, 2020, 343, 105686.                                                                                                           | 2.7  | 13        |
| 98  | Dynamic interplay of biogeochemical C, S and Ba cycles in response to the Shuram oxygenation event.<br>Journal of the Geological Society, 2022, 179, .                                                                                  | 2.1  | 12        |
| 99  | A transient peak in marine sulfate after the 635-Ma snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117341119.                                                            | 7.1  | 12        |
| 100 | Coupled isotopic evidence for elevated pCO2 and nitrogen limitation across the Santonian-Campanian transition. Chemical Geology, 2019, 504, 136-150.                                                                                    | 3.3  | 11        |
| 101 | Sulfur, oxygen, and hydrogen isotope compositions of precipitation in Seoul, South Korea.<br>Geochemical Journal, 2012, 46, 443-457.                                                                                                    | 1.0  | 9         |
| 102 | Southeastern Tanzania depositional environments, marine and terrestrial links, and exceptional<br>microfossil preservation in the warm Turonian. Bulletin of the Geological Society of America, 2017,<br>129, 515-533.                  | 3.3  | 9         |
| 103 | An authigenic response to Ediacaran surface oxidation: Remarkable micron-scale isotopic heterogeneity revealed by SIMS. Precambrian Research, 2022, 377, 106676.                                                                        | 2.7  | 8         |
| 104 | Chemostratigraphy of Neoproterozoic-Cambrian Units, White-Inyo Region, Eastern California and<br>Western Nevada: Implications for Global Correlation and Faunal Distribution. Palaios, 1996, 11, 83.                                    | 1.3  | 5         |
| 105 | Slush find. Nature, 2007, 450, 807-808.                                                                                                                                                                                                 | 27.8 | 4         |
| 106 | PROBING AN ATYPICAL SHURAM EXCURSION BY SIMS. , 2019, , .                                                                                                                                                                               |      | 3         |
| 107 | The sulfur isotopic consequence of seawater sulfate distillation preserved in the Neoproterozoic<br>Sete Lagoas post-glacial carbonate, eastern Brazil. Journal of the Geological Society, 2022, 179, .                                 | 2.1  | 3         |
| 108 | Sizing up the sub-Tommotian unconformity in Siberia: Comment and Reply. Geology, 1996, 24, 860.                                                                                                                                         | 4.4  | 2         |

7

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Corumba Meeting 2013: The Neoproterozoic Paraguay Fold Belt (Brazil): Glaciation, iron-manganese<br>formation and biota, an IGCP Workshop and Field Excursion on the Ediacaran system. Episodes, 2014,<br>37, 71-73.          | 1.2 | 2         |
| 110 | Field workshop on the Ediacaran Nama Group of southern Namibia. Episodes, 2017, 40, 259-261.                                                                                                                                  | 1.2 | 2         |
| 111 | Sizing up the sub-Tommotian unconformity in Siberia: Comment and Reply. Geology, 1997, 25, 286.                                                                                                                               | 4.4 | 1         |
| 112 | International Conference on Neoproterozoic Sedimentary Basins, Neoproterozoic Subcommission<br>Workshop on Ediacaran Paleobiology, and IGCP Field Excursion to the East Sayan Mountain Range.<br>Episodes, 2011, 34, 273-275. | 1.2 | 1         |