
Herman P Spaink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9158190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Molecular Biology, 1987, 9, 27-39.	2.0	631
3	A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature, 1991, 354, 125-130.	13.7	576
4	Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Molecular Immunology, 2004, 40, 773-783.	1.0	477
5	Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant Journal, 1998, 14, 23-34.	2.8	455
6	Root Nodulation and Infection Factors Produced by Rhizobial Bacteria. Annual Review of Microbiology, 2000, 54, 257-288.	2.9	431
7	The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20651-20656.	3.3	412
8	Induction of Pre-Infection Thread Structures in the Leguminous Host Plant by Mitogenic Lipo-Oligosaccharides of Rhizobium. Science, 1992, 257, 70-72.	6.0	337
9	The ENOD12 gene product is involved in the infection process during the pea-rhizobium interaction. Cell, 1990, 60, 281-294.	13.5	293
10	Rhizobium nodulation gene nodD as a determinant of host specificity. Nature, 1987, 328, 337-340.	13.7	247
11	Root Hair Deformation Activity of Nodulation Factors and Their Fate on Vicia sativa. Plant Physiology, 1994, 105, 787-797.	2.3	237
12	Host-Pathogen Interactions Made Transparent with the Zebrafish Model. Current Drug Targets, 2011, 12, 1000-1017.	1.0	232
13	Infection-Blocking Genes of a Symbiotic Rhizobium leguminosarum Strain That Are Involved in Temperature-Dependent Protein Secretion. Molecular Plant-Microbe Interactions, 2003, 16, 53-64.	1.4	220
14	Transcriptome Profiling and Functional Analyses of the Zebrafish Embryonic Innate Immune Response to <i>Salmonella</i> Infection. Journal of Immunology, 2009, 182, 5641-5653.	0.4	214
15	Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Molecular Immunology, 2009, 46, 2918-2930.	1.0	203
16	A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8789-8793.	3.3	201
17	Functions of the MAPK family in vertebrate-development. FEBS Letters, 2006, 580, 4984-4990.	1.3	200
18	Zebrafish embryos and larvae: A new generation of disease models and drug screens. Birth Defects Research Part C: Embryo Today Reviews, 2011, 93, 115-133.	3.6	196

#	Article	IF	CITATIONS
19	Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1512-R1519.	0.9	186
20	Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. Journal of Experimental Botany, 2005, 56, 1711-1726.	2.4	183
21	Single-Molecule Imaging of L-Type Ca2+ Channels in Live Cells. Biophysical Journal, 2001, 81, 2639-2646.	0.2	179
22	Infection of Zebrafish Embryos with Intracellular Bacterial Pathogens. Journal of Visualized Experiments, 2012, , .	0.2	176
23	Macrophage-specific gene functions in Spi1-directed innate immunity. Blood, 2010, 116, e1-e11.	0.6	172
24	MyD88 Innate Immune Function in a Zebrafish Embryo Infection Model. Infection and Immunity, 2006, 74, 2436-2441.	1.0	169
25	Induction of the nodA promoter of Rhizobium leguminosarum Sym plasmid pRL1JI by plant flavanones and flavones. Journal of Bacteriology, 1987, 169, 198-204.	1.0	167
26	The Molecular Basis of Infection and Nodulation by Rhizobia: The Ins and Outs of Sympathogenesis. Annual Review of Phytopathology, 1995, 33, 345-368.	3.5	166
27	Neutrophilâ€mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. Journal of Pathology, 2012, 227, 431-445.	2.1	158
28	Pathogen Recognition and Activation of the Innate Immune Response in Zebrafish. Advances in Hematology, 2012, 2012, 1-19.	0.6	157
29	Structural identification of the iipo-chitin oligosaccharide nodulation signals of Rhizobium loti. Molecular Microbiology, 2006, 15, 627-638.	1.2	154
30	Lipo-oligosaccharides of Rhizobium induce infection-related early nodulin gene expression in pea root hairs. Plant Journal, 1993, 4, 727-733.	2.8	153
31	Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. DMM Disease Models and Mechanisms, 2014, 7, 785-797.	1.2	153
32	Computing with DNA by operating on plasmids. BioSystems, 2000, 57, 87-93.	0.9	147
33	The DNA Damage-Regulated Autophagy Modulator DRAM1 Links Mycobacterial Recognition via TLR-MYD88 to Autophagic Defense. Cell Host and Microbe, 2014, 15, 753-767.	5.1	147
34	Functional analysis of a zebrafish <i>myd88</i> mutant identifies key transcriptional components of the innate immune system. DMM Disease Models and Mechanisms, 2013, 6, 841-54.	1.2	145
35	Discovery of a Functional Glucocorticoid Receptor β-Isoform in Zebrafish. Endocrinology, 2008, 149, 1591-1599.	1.4	144
36	Zebrafish development and regeneration: new tools for biomedical research. International Journal of Developmental Biology, 2009, 53, 835-850.	0.3	143

#	Article	IF	CITATIONS
37	Establishing Zebrafish as a Novel Exercise Model: Swimming Economy, Swimming-Enhanced Growth and Muscle Growth Marker Gene Expression. PLoS ONE, 2010, 5, e14483.	1.1	143
38	Use of Green Fluorescent Protein Color Variants Expressed on Stable Broad-Host-Range Vectors to Visualize Rhizobia Interacting with Plants. Molecular Plant-Microbe Interactions, 2000, 13, 1163-1169.	1.4	140
39	Single-Molecule Imaging of the H-Ras Membrane-Anchor Reveals Domains in the Cytoplasmic Leaflet of the Cell Membrane. Biophysical Journal, 2004, 86, 609-616.	0.2	140
40	Rhizobial lipo-oligosaccharides: answers and questions. Plant Molecular Biology, 1992, 20, 977-986.	2.0	137
41	Giant lungfish genome elucidates the conquest of land by vertebrates. Nature, 2021, 590, 284-289.	13.7	132
42	Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae. Aquatic Toxicology, 2017, 190, 112-120.	1.9	131
43	Auxin distribution inLotus japonicusduring root nodule development. Plant Molecular Biology, 2003, 52, 1169-1180.	2.0	130
44	Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Molecular Immunology, 2005, 42, 1185-1203.	1.0	129
45	The CXCR3-CXCL11 signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection. DMM Disease Models and Mechanisms, 2015, 8, 253-69.	1.2	129
46	Primitive Duplicate Hox Clusters in the European Eel's Genome. PLoS ONE, 2012, 7, e32231.	1.1	128
47	Polarization of immune responses in fish: The â€~macrophages first' point of view. Molecular Immunology, 2016, 69, 146-156.	1.0	128
48	Has2 is required upstream of Rac1 to govern dorsal migration of lateral cells during zebrafish gastrulation. Development (Cambridge), 2004, 131, 525-537.	1.2	127
49	Detection and Separation of <i>Rhizobium</i> and <i>Bradyrhizobium</i> Nod Metabolites Using Thin-Layer Chromatography. Molecular Plant-Microbe Interactions, 1992, 5, 72.	1.4	127
50	Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. Developmental and Comparative Immunology, 2008, 32, 36-49.	1.0	124
51	Isolation, chemical structures and biological activity of the lipo-chitin oligosaccharide nodulation signals from Rhizobium etli. Plant Molecular Biology, 1995, 29, 453-464.	2.0	123
52	A Two-Component System Plays an Important Role in the Root-Colonizing Ability of Pseudomonas fluorescens Strain WCS365. Molecular Plant-Microbe Interactions, 1998, 11, 45-56.	1.4	115
53	Lipochitin Oligosaccharides from Rhizobium leguminosarum bv. viciae Reduce Auxin Transport Capacity in Vicia sativa subsp. nigra Roots. Molecular Plant-Microbe Interactions, 1999, 12, 839-844.	1.4	114
54	Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter, 2011, 7, 4881.	1.2	113

#	Article	IF	CITATIONS
55	Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection and the role of innate and adaptive immune components. Molecular Immunology, 2009, 46, 2317-2332.	1.0	112
56	MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella typhimurium infection. BMC Genomics, 2013, 14, 696.	1.2	110
57	Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. Journal of Cell Science, 2005, 118, 1799-1809.	1.2	109
58	Symbiotic properties of rhizobia containing a flavonoid-independent hybrid nodD product. Journal of Bacteriology, 1989, 171, 4045-4053.	1.0	107
59	A biovar-specific signal of Rhizobium leguminosarum bv. viciae induces increased nodulation gene-inducing activity in root exudate of Vicia sativa subsp. nigra. Journal of Bacteriology, 1990, 172, 5394-5401.	1.0	107
60	Genes and signal molecules involved in the rhizobiaLeguminoseae symbiosis. Current Opinion in Plant Biology, 1998, 1, 353-359.	3.5	106
61	Rapid de novo assembly of the European eel genome from nanopore sequencing reads. Scientific Reports, 2017, 7, 7213.	1.6	104
62	Transcriptome analysis of the response to chronic constant hypoxia in zebrafish hearts. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2008, 178, 77-92.	0.7	103
63	Macrophage-Expressed Perforins Mpeg1 and Mpeg1.2 Have an Anti-Bacterial Function in Zebrafish. Journal of Innate Immunity, 2015, 7, 136-152.	1.8	102
64	A High-Throughput Screen for Tuberculosis Progression. PLoS ONE, 2011, 6, e16779.	1.1	101
65	First draft genome sequence of the Japanese eel, Anguilla japonica. Gene, 2012, 511, 195-201.	1.0	99
66	Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum. Molecular Microbiology, 1994, 13, 821-831.	1.2	98
67	Nodulation protein NodL of Rhizobium leguminosarum O-acetylates lipo-oligosaccharides, chitin fragments and N-acetylglucosamine in vitro. Molecular Microbiology, 1994, 11, 793-804.	1.2	96
68	Genetic Analysis of a pH-Regulated Operon from Rhizobium tropici CIAT899 Involved in Acid Tolerance and Nodulation Competitiveness. Molecular Plant-Microbe Interactions, 2003, 16, 159-168.	1.4	96
69	Isolation of the Rhizobium leguminosarum NodF nodulation protein: NodF carries a 4'-phosphopantetheine prosthetic group. Journal of Bacteriology, 1991, 173, 2872-2878.	1.0	95
70	Regulation of Plant Morphogenesis by Lipo-Chitin Oligosaccharides. Critical Reviews in Plant Sciences, 1996, 15, 559-582.	2.7	95
71	Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides. Journal of Bacteriology, 1995, 177, 6276-6281.	1.0	91
72	Flavonoids Synthesized in Cortical Cells During Nodule Initiation Are Early Developmental Markers in White Clover. Molecular Plant-Microbe Interactions, 1998, 11, 1223-1232.	1.4	90

#	Article	IF	CITATIONS
73	Comparison of the Exomes of Common Carp (<i>Cyprinus carpio</i>) and Zebrafish (<i>Danio) Tj ETQq1 1 0.78</i>	4314 rgBT 0.5	Overlock 1
74	Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development. Rna, 2017, 23, 1188-1199.	1.6	89
75	Infectious Disease Modeling and Innate Immune Function in Zebrafish Embryos. Methods in Cell Biology, 2011, 105, 273-308.	0.5	86
76	Nanoparticles induce dermal and intestinal innate immune system responses in zebrafish embryos. Environmental Science: Nano, 2018, 5, 904-916.	2.2	86
77	In vivo plasma membrane organization: results of biophysical approaches. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1664, 119-131.	1.4	85
78	Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda. BMC Immunology, 2011, 12, 58.	0.9	85
79	Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods, 2013, 62, 246-254.	1.9	84
80	The zebrafish as a model system for glucocorticoid receptor research. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, 75-82.	0.8	83
81	Localization of functional regions of the Rhizobium nodD product using hybrid nodD genes. Plant Molecular Biology, 1989, 12, 59-73.	2.0	80
82	Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection. Fish and Shellfish Immunology, 2011, 31, 716-724.	1.6	79
83	Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Research, 2012, 5, 703-709.	5.8	79
84	Characterization and expression patterns of the MAPK family in zebrafish. Gene Expression Patterns, 2006, 6, 1019-1026.	0.3	78
85	A p53/miR-30a/ZEB2 axis controls triple negative breast cancer aggressiveness. Cell Death and Differentiation, 2018, 25, 2165-2180.	5.0	78
86	An important developmental role for oligosaccharides during early embryogenesis of cyprinid fish. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7982-7986.	3.3	77
87	Exploring the zebrafish embryo as an alternative model for the evaluation of liver toxicity by histopathology and expression profiling. Archives of Toxicology, 2013, 87, 807-823.	1.9	77
88	Contrasted Innate Responses to Two Viruses in Zebrafish: Insights into the Ancestral Repertoire of Vertebrate IFN-Stimulated Genes. Journal of Immunology, 2014, 192, 4328-4341.	0.4	77
89	nodO, a new nod gene of the Rhizobium leguminosarum biovar viciae sym plasmid pRL1JI, encodes a secreted protein. Journal of Bacteriology, 1989, 171, 6764-6770.	1.0	76
90	cDNA array analysis of stress-induced gene expression in barley androgenesis. Physiologia Plantarum, 2006, 127, 535-550.	2.6	76

#	Article	IF	CITATIONS
91	Identification of a Novel Conjugative Plasmid in Mycobacteria That Requires Both Type IV and Type VII Secretion. MBio, 2014, 5, e01744-14.	1.8	76
92	RNAseq Profiling of Leukocyte Populations in Zebrafish Larvae Reveals a cxcl11 Chemokine Gene as a Marker of Macrophage Polarization During Mycobacterial Infection. Frontiers in Immunology, 2019, 10, 832.	2.2	76
93	Automated Whole Animal Bio-Imaging Assay for Human Cancer Dissemination. PLoS ONE, 2012, 7, e31281.	1.1	76
94	Subcellular localization of the nodD gene product in Rhizobium leguminosarum. Journal of Bacteriology, 1989, 171, 4686-4693.	1.0	75
95	Comparative studies of Toll-like receptor signalling using zebrafish. Developmental and Comparative Immunology, 2014, 46, 35-52.	1.0	75
96	Structure of theuvrBgene ofEscherichia coli. Homology with other DNA repair enzymes and characterization of the uvrB5 mutation. Nucleic Acids Research, 1986, 14, 2877-2890.	6.5	73
97	Intestinal microbiome adjusts the innate immune setpoint during colonization through negative regulation of MyD88. Nature Communications, 2018, 9, 4099.	5.8	73
98	Single-Molecule Diffusion Reveals Similar Mobility for the Lck, H-Ras, and K-Ras Membrane Anchors. Biophysical Journal, 2006, 91, 1090-1097.	0.2	72
99	Candidates for membrane progestin receptors—Past approaches and future challenges. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2008, 148, 381-389.	1.3	72
100	NodZ of Bradyrhizobium extends the nodulation host range of Rhizobium by adding a fucosyl residue to nodulation signals. Molecular Microbiology, 1996, 21, 397-408.	1.2	71
101	Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. Genome Biology, 2009, 10, R81.	13.9	71
102	Characterization of <i>Rhizobium tropici</i> ClAT899 Nodulation Factors: The Role of <i>nodH</i> and <i>nodPQ</i> Genes in Their Sulfation. Molecular Plant-Microbe Interactions, 1996, 9, 151.	1.4	70
103	Plant-inducible virulence promoter of the Agrobacterium tumefaciens Ti plasmid. Nature, 1984, 312, 564-566.	13.7	68
104	The extraembryonic serosa is a frontier epithelium providing the insect egg with a full-range innate immune response. ELife, 2014, 3, .	2.8	68
105	Swimming-induced exercise promotes hypertrophy and vascularization of fast skeletal muscle fibres and activation of myogenic and angiogenic transcriptional programs in adult zebrafish. BMC Genomics, 2014, 15, 1136.	1.2	67
106	Glucocorticoid-Induced Attenuation of the Inflammatory Response in Zebrafish. Endocrinology, 2016, 157, 2772-2784.	1.4	67
107	Application of Coiled Coil Peptides in Liposomal Anticancer Drug Delivery Using a Zebrafish Xenograft Model. ACS Nano, 2016, 10, 7428-7435.	7.3	66
108	Pharmacokinetic Modeling of Paracetamol Uptake and Clearance in Zebrafish Larvae: Expanding the Allometric Scale in Vertebrates with Five Orders of Magnitude. Zebrafish, 2016, 13, 504-510.	0.5	66

#	Article	IF	CITATIONS
109	Mutation in GDP-Fucose Synthesis Genes of Sinorhizobium fredii Alters Nod Factors and Significantly Decreases Competitiveness to Nodulate Soybeans. Molecular Plant-Microbe Interactions, 1999, 12, 207-217.	1.4	64
110	Cell Biological Changes of Outer Cortical Root Cells in Early Determinate Nodulation. Molecular Plant-Microbe Interactions, 2001, 14, 839-847.	1.4	64
111	Host Specificity of <i>Rhizobium leguminosarum </i> is Determined by the Hydrophobicity of Highly Unsaturated Fatty Acyl Moieties of the Nodulation Factors. Molecular Plant-Microbe Interactions, 1995, 8, 155.	1.4	64
112	Deep RNA Sequencing of the Skeletal Muscle Transcriptome in Swimming Fish. PLoS ONE, 2013, 8, e53171.	1.1	62
113	Induction of nodule primordia on Phaseolus and Acacia by lipo-chitin oligosaccharide nodulation signals from broad-host-range Rhizobium strain GRH2. Plant Molecular Biology, 1995, 29, 465-477.	2.0	61
114	Uridine, a cell division factor in pea roots. Plant Molecular Biology, 1995, 29, 869-873.	2.0	61
115	Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4336-4341.	3.3	61
116	Magnetic Resonance Microscopy of the Adult Zebrafish. Zebrafish, 2006, 3, 431-439.	0.5	61
117	Distinct functions for ERK1 and ERK2 in cell migration processes during zebrafish gastrulation. Developmental Biology, 2008, 319, 370-383.	0.9	61
118	Chitin Oligosaccharide Synthesis by Rhizobia and Zebrafish Embryos Starts by Glycosyl Transfer to O4 of the Reducing-Terminal Residueâ€. Biochemistry, 1999, 38, 4045-4052.	1.2	60
119	The epigenetic regulator Histone Deacetylase 1 promotes transcription of a core neurogenic programme in zebrafish embryos. BMC Genomics, 2011, 12, 24.	1.2	60
120	Deficiency in Hematopoietic Phosphatase Ptpn6/Shp1 Hyperactivates the Innate Immune System and Impairs Control of Bacterial Infections in Zebrafish Embryos. Journal of Immunology, 2013, 190, 1631-1645.	0.4	60
121	Isoform-specific differences in rapid nucleocytoplasmic shuttling cause distinct subcellular distributions of 14-3-3σ and 14-3-3ζ. Journal of Cell Science, 2004, 117, 1411-1420.	1.2	59
122	Rhizobium Lipooligosaccharides Rescue a Carrot Somatic Embryo Mutant. Plant Cell, 1993, 5, 615.	3.1	58
123	Effect of pH and soybean cultivars on the quantitative analyses of soybean rhizobia populations. Journal of Biotechnology, 2001, 91, 243-255.	1.9	58
124	Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology, 2015, 25, 469-482.	1.3	58
125	Novel Branched Nod Factor Structure Results from α-(1→3) Fucosyl Transferase Activity: The Major Lipo-Chitin Oligosaccharides fromMesorhizobiumlotiStrain NZP2213 Bear an α-(1→3) Fucosyl Substituent on a Nonterminal Backbone Residueâ€. Biochemistry, 1998, 37, 9024-9032.	1.2	57
126	A zebrafish high throughput screening system used for Staphylococcus epidermidis infection marker discovery. BMC Genomics, 2013, 14, 255.	1.2	57

#	Article	IF	CITATIONS
127	Transcriptional and Metabolic Effects of Glucocorticoid Receptor $\hat{I}\pm$ and \hat{I}^2 Signaling in Zebrafish. Endocrinology, 2015, 156, 1757-1769.	1.4	57
128	Regulation of plant morphogenesis by Lipoâ€Chitin oligosaccharides. Critical Reviews in Plant Sciences, 1996, 15, 559-582.	2.7	56
129	Heterologous Rhizobial Lipochitin Oligosaccharides and Chitin Oligomers Induce Cortical Cell Divisions in Red Clover Roots, Transformed with the Pea Lectin Gene. Molecular Plant-Microbe Interactions, 2000, 13, 268-276.	1.4	55
130	Transcriptome analysis of Traf6 function in the innate immune response of zebrafish embryos. Molecular Immunology, 2010, 48, 179-190.	1.0	55
131	A full-body transcriptome and proteome resource for the European common carp. BMC Genomics, 2016, 17, 701.	1.2	55
132	In Vitro and In Vivo Supramolecular Modification of Biomembranes Using a Lipidated Coiledâ€Coil Motif. Angewandte Chemie - International Edition, 2013, 52, 14247-14251.	7.2	54
133	Drug Resistance in Nontuberculous Mycobacteria: Mechanisms and Models. Biology, 2021, 10, 96.	1.3	54
134	A Lotus japonicus Nodulation System Based on Heterologous Expression of the Fucosyl Transferase NodZ and the Acetyl Transferase NolL in Rhizobium leguminosarum. Molecular Plant-Microbe Interactions, 2000, 13, 475-479.	1.4	53
135	Lotus japonicus Contains Two Distinct ENOD40 Genes That Are Expressed in Symbiotic, Nonsymbiotic, and Embryonic Tissues. Molecular Plant-Microbe Interactions, 2000, 13, 987-994.	1.4	53
136	Single-Molecule Microscopy Reveals Membrane Microdomain Organization of Cells in a Living Vertebrate. Biophysical Journal, 2009, 97, 1206-1214.	0.2	53
137	Role of rhizobial lipo-chitin oligosaccharide signal molecules in root nodule organogenesis. Plant Molecular Biology, 1994, 26, 1413-1422.	2.0	52
138	A central domain of Rhizobium NodE protein mediates host specificity by determining the hydrophobicity of fatty acyl moieties of nodulation factors. Molecular Microbiology, 1995, 16, 1123-1136.	1.2	52
139	ZebraFISH: Fluorescent In Situ Hybridization Protocol and Three-Dimensional Imaging of Gene Expression Patterns. Zebrafish, 2006, 3, 465-476.	0.5	52
140	Testing Tuberculosis Drug Efficacy in a Zebrafish High-Throughput Translational Medicine Screen. Antimicrobial Agents and Chemotherapy, 2015, 59, 753-762.	1.4	52
141	Genomic annotation and expression analysis of the zebrafish Rho small GTPase family during development and bacterial infection. Genomics, 2005, 86, 25-37.	1.3	51
142	Photothermal Correlation Spectroscopy of Gold Nanoparticles in Solution. Journal of Physical Chemistry C, 2009, 113, 11451-11457.	1.5	51
143	Automated microinjection of cell-polymer suspensions in 3D ECM scaffolds for high-throughput quantitative cancer invasion screens. Biomaterials, 2012, 33, 181-188.	5.7	50
144	Correlative light and electron microscopy imaging of autophagy in a zebrafish infection model. Autophagy, 2014, 10, 1844-1857.	4.3	49

#	Article	IF	CITATIONS
145	Additional nodulation genes on the Sym plasmid of Rhizobium leguminosarum biovar viciae. Plant Molecular Biology, 1989, 13, 163-174.	2.0	47
146	Nod Factors of Rhizobium leguminosarum bv. viciae and Their Fucosylated Derivatives Stimulate a Nod Factor Cleaving Activity in Pea Roots and Are Hydrolyzed In Vitro by Plant Chitinases at Different Rates. Molecular Plant-Microbe Interactions, 2000, 13, 799-807.	1.4	47
147	Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development. Current Opinion in Structural Biology, 2001, 11, 608-616.	2.6	47
148	Hyperinsulinemia induces insulin resistance and immune suppression via Ptpn6/Shp1 in zebrafish. Journal of Endocrinology, 2014, 222, 229-241.	1.2	47
149	Characterization of Genomic Clones and Expression Analysis of the Three Types of Superoxide Dismutases During Nodule Development in Lotus japonicus. Molecular Plant-Microbe Interactions, 2007, 20, 262-275.	1.4	46
150	The Arabidopsis selenium-binding protein confers tolerance to toxic levels of selenium. Functional Plant Biology, 2005, 32, 881.	1.1	45
151	Phagocytosis of mycobacteria by zebrafish macrophages is dependent on the scavenger receptor Marco, a key control factor of pro-inflammatory signalling. Developmental and Comparative Immunology, 2014, 47, 223-233.	1.0	44
152	<i>InÂvivo</i> inactivation of glycosidases by conduritol B epoxide and cyclophellitol as revealed by activityâ€based protein profiling. FEBS Journal, 2019, 286, 584-600.	2.2	44
153	Time-lapse tracking of barley androgenesis reveals position-determined cell death within pro-embryos. Planta, 2005, 220, 531-540.	1.6	43
154	ERK1 and ERK2 MAPK are key regulators of distinct gene sets in zebrafish embryogenesis. BMC Genomics, 2008, 9, 196.	1.2	43
155	Ewing sarcoma inhibition by disruption of <scp>EWSR1–FLI1</scp> transcriptional activity and reactivation of p53. Journal of Pathology, 2014, 233, 415-424.	2.1	42
156	RNA isolation method for single embryo transcriptome analysis in zebrafish. BMC Research Notes, 2010, 3, 73.	0.6	41
157	A Rhizobium leguminosarum Biovar trifolii Locus Not Localized on the Sym Plasmid Hinders Effective Nodulation on Plants of the Pea Cross-Inoculation Group. Molecular Plant-Microbe Interactions, 1997, 10, 938-941.	1.4	40
158	GLUT2-Mediated Glucose Uptake and Availability Are Required for Embryonic Brain Development in Zebrafish. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 74-85.	2.4	40
159	RNA Sequencing of FACS-Sorted Immune Cell Populations from Zebrafish Infection Models to Identify Cell Specific Responses to Intracellular Pathogens. Methods in Molecular Biology, 2014, 1197, 261-274.	0.4	40
160	Structural motifs in the RNA encoded by the early nodulation gene enod40 of soybean. Nucleic Acids Research, 2003, 31, 5003-5015.	6.5	39
161	Cyclodextrin/dextran based drug carriers for a controlled release of hydrophobic drugs in zebrafish embryos. Soft Matter, 2010, 6, 3778.	1.2	39
162	Lotus japonicus Gene Ljsbp Is Highly Conserved Among Plants and Animals and Encodes a Homologue to the Mammalian Selenium-Binding Proteins. Molecular Plant-Microbe Interactions, 2002, 15, 313-322.	1.4	38

#	Article	IF	CITATIONS
163	Accessory molecules for Toll-like receptors in Teleost fish. Identification of TLR4 interactor with leucine-rich repeats (TRIL). Molecular Immunology, 2013, 56, 745-756.	1.0	38
164	Identification and functional characterization of nonmammalian Toll-like receptor 20. Immunogenetics, 2014, 66, 123-141.	1.2	38
165	14-3-3 isoforms and pattern formation during barley microspore embryogenesis. Journal of Experimental Botany, 2003, 54, 1033-1043.	2.4	37
166	Structural determination of the lipo-chitin oligosaccharide nodulation signals produced by Rhizobium fredii HH103. Carbohydrate Research, 1997, 303, 435-443.	1.1	36
167	Induction of hairy roots for symbiotic gene expression studies. , 2005, , 261-277.		36
168	Ethylene as a regulator of Rhizobium infection. Trends in Plant Science, 1997, 2, 203-204.	4.3	35
169	Mycobacteria Counteract a TLR-Mediated Nitrosative Defense Mechanism in a Zebrafish Infection Model. PLoS ONE, 2014, 9, e100928.	1.1	35
170	Improving small RNA-seq by using a synthetic spike-in set for size-range quality control together with a set for data normalization. Nucleic Acids Research, 2015, 43, e89-e89.	6.5	35
171	Conserved Expression Signatures between Medaka and Human Pigment Cell Tumors. PLoS ONE, 2012, 7, e37880.	1.1	35
172	Lotus-related species and their agronomic importance. , 2005, , 25-37.		34
173	Functional Inhibition of Host Histone Deacetylases (HDACs) Enhances in vitro and in vivo Anti-mycobacterial Activity in Human Macrophages and in Zebrafish. Frontiers in Immunology, 2020, 11, 36.	2.2	34
174	Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants. Plant Molecular Biology, 1998, 37, 715-727.	2.0	33
175	Comparison of Characteristics of the nodX Genes from Various Rhizobium leguminosarum Strains. Molecular Plant-Microbe Interactions, 1999, 12, 252-258.	1.4	33
176	DNA computing by blocking. Theoretical Computer Science, 2003, 292, 653-665.	0.5	33
177	Programmed cell death during the transition from multicellular structures to globular embryos in barley androgenesis. Planta, 2005, 221, 459-470.	1.6	33
178	Genetic and Transcriptome Characterization of Model Zebrafish Cell Lines. Zebrafish, 2006, 3, 441-453.	0.5	33
179	Cloning, functional expression and characterization of Mesorhizobium loti arylamine N-acetyltransferases: rhizobial symbiosis supplies leguminous plants with the xenobiotic N-acetylation pathway. Molecular Microbiology, 2006, 60, 505-512.	1.2	33
180	A spatially restricted increase in receptor mobility is involved in directional sensing during <i>Dictyostelium discoideum</i> chemotaxis. Journal of Cell Science, 2008, 121, 1750-1757.	1.2	33

#	Article	IF	CITATIONS
181	Mother-Specific Signature in the Maternal Transcriptome Composition of Mature, Unfertilized Zebrafish Eggs. PLoS ONE, 2016, 11, e0147151.	1.1	33
182	Three-dimensional reconstruction and measurements of zebrafish larvae from high-throughput axial-view in vivo imaging. Biomedical Optics Express, 2017, 8, 2611.	1.5	33
183	Analysis of Promoter Activity of the Early Nodulin Enod40 in Lotus japonicus. Molecular Plant-Microbe Interactions, 2005, 18, 414-427.	1.4	32
184	Temporal expression of hepatic estrogen receptor 1, vitellogenin1 and vitellogenin2 in European silver eels. General and Comparative Endocrinology, 2010, 166, 1-11.	0.8	32
185	GLUT12 deficiency during early development results in heart failure and a diabetic phenotype in zebrafish. Journal of Endocrinology, 2015, 224, 1-15.	1.2	32
186	Transcriptomic Approaches in the Zebrafish Model for Tuberculosis—Insights Into Host- and Pathogen-specific Determinants of the Innate Immune Response. Advances in Genetics, 2016, 95, 217-251.	0.8	32
187	Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons. Rna, 2017, 23, 446-456.	1.6	32
188	Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants. Plant Molecular Biology, 1998, 38, 861-873.	2.0	31
189	DNA computing of solutions to knapsack problems. BioSystems, 2007, 88, 156-162.	0.9	31
190	Crystal structure of the TLDc domain of oxidation resistance protein 2 from zebrafish. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1694-1698.	1.5	31
191	Real-time imaging and genetic dissection of host-microbe interactions in zebrafish. Cellular Microbiology, 2014, 16, 39-49.	1.1	31
192	Imaging Cancer Angiogenesis and Metastasis in a Zebrafish Embryo Model. Advances in Experimental Medicine and Biology, 2016, 916, 239-263.	0.8	31
193	Systems pharmacology of hepatic metabolism in zebrafish larvae. Drug Discovery Today: Disease Models, 2016, 22, 27-34.	1.2	31
194	Functional analysis of an interspecies chimera of acyl carrier proteins indicates a specialized domain for protein recognition. Molecular Genetics and Genomics, 1998, 257, 641-648.	2.4	30
195	Specific recognition of bacteria by plant LysM domain receptor kinases. Trends in Microbiology, 2004, 12, 201-204.	3.5	30
196	Efferocytosis and extrusion of leukocytes determine the progression of early mycobacterial pathogenesis. Journal of Cell Science, 2016, 129, 3385-95.	1.2	30
197	Visualizing Human Hematopoietic Stem Cell Trafficking In Vivo Using a Zebrafish Xenograft Model. Stem Cells and Development, 2016, 25, 360-365.	1.1	30
198	Biological clock function is linked to proactive and reactive personality types. BMC Biology, 2018, 16, 148.	1.7	30

#	Article	IF	CITATIONS
199	Substrate Specificity and Kinetic Studies of Nodulation Protein NodL of Rhizobium leguminosarum. Biochemistry, 1995, 34, 12712-12720.	1.2	29
200	Rhizobium leguminosarum bv. trifolii produces Lipo-chitin Oligosaccharides with nodE-dependent Highly Unsaturated Fatty Acyl Moieties. Journal of Biological Chemistry, 1996, 271, 22563-22569.	1.6	29
201	Structural characterisation of lipo-chitin oligosaccharides isolated from Bradyrhizobium aspalati, microsymbionts of commercially important South African legumes. Carbohydrate Research, 1999, 317, 155-163.	1.1	29
202	In vivo metabolite profile of adult zebrafish brain obtained by highâ€resolution localized magnetic resonance spectroscopy. Journal of Magnetic Resonance Imaging, 2009, 29, 275-281.	1.9	28
203	First artificial hybrid of the eel species Anguilla australis and Anguilla anguilla. BMC Developmental Biology, 2011, 11, 16.	2.1	28
204	An osteosarcoma zebrafish model implicates <i>Mmpâ€19</i> and <i>Etsâ€1</i> as well as reduced host immune response in angiogenesis and migration. Journal of Pathology, 2012, 227, 245-253.	2.1	28
205	Common and specific downstream signaling targets controlled by Tlr2 and Tlr5 innate immune signaling in zebrafish. BMC Genomics, 2015, 16, 547.	1.2	28
206	Transcriptome sequencing supports a conservation of macrophage polarization in fish. Scientific Reports, 2020, 10, 13470.	1.6	28
207	Diversity of Root Nodulation and Rhizobial Infection Processes. , 1998, , 347-360.		28
208	The molecular basis of the host specificity of the Rhizobium bacteria. Antonie Van Leeuwenhoek, 1994, 65, 81-98.	0.7	27
209	Restriction of Host Range by the sym2 Allele of Afghan Pea Is Nonspecific for the Type of Modification at the Reducing Terminus of Nodulation Signals. Molecular Plant-Microbe Interactions, 1998, 11, 418-422.	1.4	27
210	Genomic annotation and transcriptome analysis of the zebrafish (Danio rerio) hox complex with description of a novel member, hoxb13a. Evolution & Development, 2005, 7, 362-375.	1.1	27
211	Analyzing the impact of Mycobacterium tuberculosis infection on primary human macrophages by combined exploratory and targeted metabolomics. Scientific Reports, 2020, 10, 7085.	1.6	27
212	DNA computing using single-molecule hybridization detection. Nucleic Acids Research, 2004, 32, 4962-4968.	6.5	26
213	Different subcellular localization and trafficking properties of KNOX class 1 homeodomain proteins from rice. Plant Molecular Biology, 2004, 55, 781-796.	2.0	26
214	Quantification of GPCR internalization by single-molecule microscopy in living cells. Integrative Biology (United Kingdom), 2011, 3, 675.	0.6	26
215	An automated screening method for detecting compounds with goitrogenic activity using transgenic zebrafish embryos. PLoS ONE, 2018, 13, e0203087.	1.1	26
216	A receptor in symbiotic dialogue. Nature, 2002, 417, 910-911.	13.7	24

#	Article	IF	CITATIONS
217	Advances in genomics of bony fish. Briefings in Functional Genomics, 2014, 13, 144-156.	1.3	24
218	Enhanced Fatty Acid Scavenging and Glycerophospholipid Metabolism Accompany Melanocyte Neoplasia Progression in Zebrafish. Cancer Research, 2019, 79, 2136-2151.	0.4	24
219	Mechanistic and Quantitative Understanding of Pharmacokinetics in Zebrafish Larvae through Nanoscale Blood Sampling and Metabolite Modeling of Paracetamol. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 15-24.	1.3	24
220	Induction of Rhizobium Nod Genes by Flavonoids: Differential Adaptation of Promoter, nodD Gene and Inducers for Various Cross-Inoculation Groups. , 1986, , 123-135.		24
221	The Role of TLR2 in Infectious Diseases Caused by Mycobacteria: From Cell Biology to Therapeutic Target. Biology, 2022, 11, 246.	1.3	24
222	Biosynthesis and Secretion of Rhizobial Lipochitin-Oligosaccharide Signal Molecules. Sub-Cellular Biochemistry, 1998, 29, 29-71.	1.0	23
223	Specific activation of ERK pathways by chitin oligosaccharides in embryonic zebrafish cell lines. Glycobiology, 2003, 13, 725-732.	1.3	23
224	Identification of Common Carp Innate Immune Genes with Whole-Genome Sequencing and RNA-Seq Data. Journal of Integrative Bioinformatics, 2011, 8, 165-175.	1.0	23
225	Identifying small RNAs derived from maternal- and somatic-type rRNAs in zebrafish development. Genome, 2018, 61, 371-378.	0.9	23
226	Male silver eels mature by swimming. BMC Physiology, 2008, 8, 14.	3.6	22
227	Impact of post-hatching maturation on the pharmacokinetics of paracetamol in zebrafish larvae. Scientific Reports, 2019, 9, 2149.	1.6	22
228	A Catalogue of Molecular, Physiological and Symbiotic Properties of Soybean-Nodulating Rhizobial Strains from Different Soybean Cropping Areas of China. Systematic and Applied Microbiology, 2003, 26, 453-465.	1.2	21
229	Rapid metabolic screening of early zebrafish embryogenesis based on direct infusion-nanoESI-FTMS. Metabolomics, 2013, 9, 864-873.	1.4	21
230	The embryonic expression patterns of zebrafish genes encoding LysM-domains. Gene Expression Patterns, 2013, 13, 212-224.	0.3	21
231	Establishment and Optimization of a High Throughput Setup to Study Staphylococcus epidermidis and Mycobacterium marinum Infection as a Model for Drug Discovery. Journal of Visualized Experiments, 2014, , e51649.	0.2	21
232	Application of Caenorhabditis elegans (nematode) and Danio rerio embryo (zebrafish) as model systems to screen for developmental and reproductive toxicity of Piperazine compounds. Toxicology in Vitro, 2017, 44, 11-16.	1.1	21
233	Infection and RNA-seq analysis of a zebrafish tlr2 mutant shows a broad function of this toll-like receptor in transcriptional and metabolic control and defense to Mycobacterium marinum infection. BMC Genomics, 2019, 20, 878.	1.2	21
234	Photothermal Detection of Individual Gold Nanoparticles: Perspectives for Highâ€Throughput Screening. ChemPhysChem, 2008, 9, 1761-1766.	1.0	20

#	Article	IF	CITATIONS
235	<i>In Vivo</i> Magnetic Resonance Imaging to Detect Malignant Melanoma in Adult Zebrafish. Zebrafish, 2010, 7, 143-148.	0.5	20
236	Predicting Metabolism from Gene Expression in an Improved Whole-Genome Metabolic Network Model of <i>Danio rerio</i> . Zebrafish, 2019, 16, 348-362.	0.5	20
237	Deep learning image recognition enables efficient genome editing in zebrafish by automated injections. PLoS ONE, 2019, 14, e0202377.	1.1	20
238	Spatial and temporal expression patterns of chitinase genes in developing zebrafish embryos. Gene Expression Patterns, 2014, 14, 69-77.	0.3	19
239	Changes in ovarian gene expression profiles and plasma hormone levels in maturing European eel () Tj ETQq1 2 2016, 225, 185-196.	l 0.784314 0.8	rgBT /Overloc 19
240	Chemical synthesis of N-acetylglucosamine derivatives and their use as glycosyl acceptors by the Mesorhizobium loti chitin oligosaccharide synthase NodC. Carbohydrate Research, 1999, 321, 176-189.	1.1	18
241	A ΔRaf1–ERâ€inducible oncogenic zebrafish liver cell model identifies hepatocellular carcinoma signatures. Journal of Pathology, 2011, 225, 19-28.	2.1	18
242	Identifying Proteins in Zebrafish Embryos Using Spectral Libraries Generated from Dissected Adult Organs and Tissues. Journal of Proteome Research, 2014, 13, 1537-1544.	1.8	18
243	Functional analysis reveals no transcriptional role for the glucocorticoid receptor β-isoform in zebrafish. Molecular and Cellular Endocrinology, 2017, 447, 61-70.	1.6	18
244	Collinear Hox-Hox interactions are involved in patterning the vertebrate anteroposterior (A-P) axis. PLoS ONE, 2017, 12, e0175287.	1.1	18
245	NodFE-Dependent Fatty Acids That Lack an α-β Unsaturation Are Subject to Differential Transfer, Leading to Novel Phospholipids. Molecular Plant-Microbe Interactions, 1998, 11, 33-44.	1.4	17
246	Imaging of Human Cancer Cell Proliferation, Invasion, and Micrometastasis in a Zebrafish Xenogeneic Engraftment Model. Methods in Molecular Biology, 2016, 1451, 155-169.	0.4	17
247	Performing DNA nanotechnology operations on a zebrafish. Chemical Science, 2018, 9, 7271-7276.	3.7	17
248	Growth Temperature Regulation of Host-Specific Modifications of Rhizobial Lipo-Chitin Oligosaccharides: The Function of nodX Is Temperature Regulated. Molecular Plant-Microbe Interactions, 2000, 13, 808-820.	1.4	16
249	Protein output for DNA computing. Natural Computing, 2005, 4, 1-10.	1.8	16
250	Swimming suppresses hepatic vitellogenesis in European female silver eels as shown by expression of the estrogen receptor 1, vitellogenin1 and vitellogenin2 in the liver. Reproductive Biology and Endocrinology, 2010, 8, 27.	1.4	16
251	Rhizobial NodL O -Acetyl Transferase and NodS N -Methyl Transferase Functionally Interfere in Production of Modified Nod Factors. Journal of Bacteriology, 2001, 183, 3408-3416.	1.0	15
252	Novel lipochitin oligosaccharide structures produced by Rhizobium etli KIM5s. Carbohydrate Research, 2002, 337, 1193-1202.	1.1	15

#	Article	IF	CITATIONS
253	Identification of molecular markers in pectoral fin to predict artificial maturation of female European eels (Anguilla anguilla). General and Comparative Endocrinology, 2014, 204, 267-276.	0.8	15
254	Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics. Immunogenetics, 2015, 67, 135-147.	1.2	15
255	Tuberculosis causes highly conserved metabolic changes in human patients, mycobacteria-infected mice and zebrafish larvae. Scientific Reports, 2020, 10, 11635.	1.6	15
256	Function of chitin oligosaccharides in plant and animal development. , 1999, 87, 71-83.		15
257	The Pituitary Gland of the European Eel Reveals Massive Expression of Genes Involved in the Melanocortin System. PLoS ONE, 2013, 8, e77396.	1.1	15
258	Identification of hoxb1b downstream genes: hoxb1b as a regulatory factor controlling transcriptional networks and cell movement during zebrafish gastrulation. International Journal of Developmental Biology, 2010, 54, 55-62.	0.3	14
259	Quantitative bioassays for measuring biologically functional gonadotropins based on eel gonadotropic receptors. General and Comparative Endocrinology, 2012, 178, 145-152.	0.8	14
260	Parallel deep transcriptome and proteome analysis of zebrafish larvae. BMC Research Notes, 2013, 6, 428.	0.6	14
261	Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity. Nanotoxicology, 2020, 14, 725-739.	1.6	14
262	Zebrafish Brain Lipid Characterization and Quantification by ¹ H Nuclear Magnetic Resonance Spectroscopy and MALDI-TOF Mass Spectrometry. Zebrafish, 2014, 11, 240-247.	0.5	13
263	Outsideâ€In Systems Pharmacology Combines Innovative Computational Methods With Highâ€Throughput Whole Vertebrate Studies. CPT: Pharmacometrics and Systems Pharmacology, 2018, 7, 285-287.	1.3	13
264	The Function of the Rhizobial NodABC and NodFEL Operons in the Biosynthesis of Lipo-Oligosaccharides. Current Plant Science and Biotechnology in Agriculture, 1993, , 165-170.	0.0	13
265	Novel interaction of selenium-binding protein with glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase of Arabidopsis thaliana. Functional Plant Biology, 2006, 33, 847.	1.1	12
266	Random Scission of Polymers: Numerical Simulations, and Experiments on Hyaluronan Hydrolosis. Macromolecules, 2011, 44, 2559-2567.	2.2	12
267	Rapid screening of innate immune gene expression in zebrafish using reverse transcription - multiplex ligation-dependent probe amplification. BMC Research Notes, 2011, 4, 196.	0.6	12
268	Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. BMC Genomics, 2017, 18, 287.	1.2	12
269	Identification of common carp innate immune genes with whole-genome sequencing and RNA-Seq data. Journal of Integrative Bioinformatics, 2011, 8, 169.	1.0	12
270	Different subcellular localization and trafficking properties of KNOX class 1 homeodomain proteins from rice. Plant Molecular Biology, 2004, 55, 781-96.	2.0	12

#	Article	IF	CITATIONS
271	Detection of cannabinoid receptor type 2 in native cells and zebrafish with a highly potent, cell-permeable fluorescent probe. Chemical Science, 2022, 13, 5539-5545.	3.7	12
272	The zebrafish embryo as a model to quantify early inflammatory cell responses to biomaterials. Journal of Biomedical Materials Research - Part A, 2017, 105, 2522-2532.	2.1	11
273	Increased dynamin expression precedes proteinuria in glomerular disease. Journal of Pathology, 2019, 247, 177-185.	2.1	11
274	Leptin deficiency affects glucose homeostasis and results in adiposity in zebrafish. Journal of Endocrinology, 2021, 249, 125-134.	1.2	11
275	Expression analysis of the family of 14-3-3 proteins in zebrafish development. Gene Expression Patterns, 2007, 7, 511-520.	0.3	10
276	Glomerular permeability is not affected by heparan sulfate glycosaminoglycan deficiency in zebrafish embryos. American Journal of Physiology - Renal Physiology, 2019, 317, F1211-F1216.	1.3	10
277	Antiâ€ŧuberculosis effect of isoniazid scales accurately from zebrafish to humans. British Journal of Pharmacology, 2020, 177, 5518-5533.	2.7	10
278	Promoters and Operon Structure of the Nodulation Region of the Rhizobium Leguminosarum Symbiosis Plasmid pRL1JI. , 1986, , 55-68.		10
279	The Production of Species-Specific Highly Unsaturated Fatty Acyl-Containing LCOs from Rhizobium leguminosarum bv. trifolii Is Stringently Regulated by nodD and Involves the nodRL Genes. Molecular Plant-Microbe Interactions, 2006, 19, 215-226.	1.4	9
280	smarce1 mutants have a defective endocardium and an increased expression of cardiac transcription factors in zebrafish. Scientific Reports, 2018, 8, 15369.	1.6	9
281	Investigation of the interaction of DAD1-LIKE LIPASE 3 (DALL3) with Selenium Binding Protein 1 (SBP1) in Arabidopsis thaliana. Plant Science, 2020, 291, 110357.	1.7	9
282	A Novel Function of TLR2 and MyD88 in the Regulation of Leukocyte Cell Migration Behavior During Wounding in Zebrafish Larvae. Frontiers in Cell and Developmental Biology, 2021, 9, 624571.	1.8	9
283	The ubiquitous catechol moiety elicits siderophore and angucycline production in Streptomyces. Communications Chemistry, 2022, 5, .	2.0	9
284	Novel interactions of Selenium Binding Protein family with the PICOT containing proteins AtGRXS14 and AtGRXS16 in Arabidopsis thaliana. Plant Science, 2019, 281, 102-112.	1.7	8
285	Thermal Proteome Profiling in Zebrafish Reveals Effects of Napabucasin on Retinoic Acid Metabolism. Molecular and Cellular Proteomics, 2021, 20, 100033.	2.5	8
286	Host-directed therapies for tuberculosis: quantitative systems pharmacology approaches. Trends in Pharmacological Sciences, 2022, 43, 293-304.	4.0	8
287	Knocking out nodules. Nature, 1999, 402, 135-136.	13.7	7
288	Mutants in the nodFEL promoter of Rhizobium leguminosarum bv. viciae reveal a role of individual nucleotides in transcriptional activation and protein binding. Archives of Microbiology, 2001, 175, 152-160.	1.0	7

4

	Article	IF	CITATIONS
289	Alfalfa nodulation by Sinorhizobium fredii does not require sulfated Nod-factors. Functional Plant Biology, 2003, 30, 1219.	1.1	7
290	Integrating heterogeneous sequence information for transcriptome-wide microarray design; a Zebrafish example. BMC Research Notes, 2010, 3, 192.	0.6	7
291	Hoxc6 loss of function truncates the main body axis in Xenopus. Cell Cycle, 2017, 16, 1136-1138.	1.3	7
292	De novo whole-genome assembly of a wild type yeast isolate using nanopore sequencing. F1000Research, 2017, 6, 618.	0.8	7
293	Role of rhizobial lipo-oligosacharides in root nodule formation on leguminous plants. Plant and Soil, 1994, 161, 81-89.	1.8	6
294	Expression of Rhizobium Chitin Oligosaccharide Fucosyltransferase in Zebrafish Embryos Disrupts Normal Developmenta,. Annals of the New York Academy of Sciences, 1998, 842, 49-54.	1.8	6
295	Purification, crystallization and preliminary crystallographic studies of the TLDc domain of oxidation resistance protein 2 from zebrafish. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1253-1256.	0.7	6
296	Nano-Sampling and Reporter Tools to Study Metabolic Regulation in Zebrafish. Frontiers in Cell and Developmental Biology, 2019, 7, 15.	1.8	6
297	Synthesis and biological evaluation of oligosaccharides related to the molecule signals in plant defence and the Rhizobium-legume symbiosis. Tetrahedron, 2002, 58, 521-530.	1.0	5
298	Automation of Technology for Cancer Research. Advances in Experimental Medicine and Biology, 2016, 916, 315-332.	0.8	5
299	Quantification of Natural Growth of Two Strains of <i>Mycobacterium Marinum</i> for Translational Antituberculosis Drug Development. Clinical and Translational Science, 2020, 13, 1060-1064.	1.5	5
300	The adapter protein Myd88 plays an important role in limiting mycobacterial growth in a zebrafish model for tuberculosis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 479, 265-275.	1.4	5
301	Flavonoid Compounds as Molecular Signals in Rhizobium — Legume Symbiosis. , 1988, , 189-205.		5
302	De novo whole-genome assembly of a wild type yeast isolate using nanopore sequencing. F1000Research, 2017, 6, 618.	0.8	5
303	Silhouette-based 3D model for zebrafish high-throughput imaging. , 2015, , .		4
304	Metabolomic and transcriptomic profiling of adult mice and larval zebrafish leptin mutants reveal a common pattern of changes in metabolites and signaling pathways. Cell and Bioscience, 2021, 11, 126.	2.1	4
305	Mapping and map-based cloning. , 2005, , 217-232.		4

Concurrent visualization of gusA and lacZ reporter gene expression. , 2005, , 99-109.

#	Article	IF	CITATIONS
307	Flavonoids as Regulators of Plant Development. , 1998, , 167-177.		4
308	Using Multiobjective Optimization and Energy Minimization to Design an Isoform-Selective Ligand of the 14-3-3 Protein. Lecture Notes in Computer Science, 2012, , 12-24.	1.0	4
309	Rhizobium. Molecular Genetics and Genomics, 1996, 251, 44.	2.4	4
310	<title>Data submission of 3D image sets to a bio-molecular database using active shape models and a 3D reference model for projection</title> . , 2003, 5304, 13.		3
311	Analysis of Interactions of Signaling Proteins with Phage-Displayed Ligands by Fluorescence Correlation Spectroscopy. Journal of Biomolecular Screening, 2008, 13, 766-776.	2.6	3
312	A quantitative in vivo assay for craniofacial developmental toxicity of histone deacetylases. Toxicology Letters, 2021, 342, 20-25.	0.4	3
313	Zebrafish larvae as experimental model to expedite the search for new biomarkers and treatments for neonatal sepsis. Journal of Clinical and Translational Science, 2021, 5, 1-34.	0.3	3
314	Generation of Constitutive Active ERK Mutants as Tools for Cancer Research in Zebrafish. , 2013, 2013, 1-11.		2
315	A Zebrafish Embryo Model for In Vivo Visualization and Intravital Analysis of Biomaterial-associated Staphylococcus aureus Infection. Journal of Visualized Experiments, 2019, , .	0.2	2
316	Antibiofilm effect of C-10 massoia lactone toward polymicrobial oral biofilms. Journal of Advanced Pharmaceutical Technology and Research, 2021, 12, 89.	0.4	2
317	The Role of Galanin during Bacterial Infection in Larval Zebrafish. Cells, 2021, 10, 2011.	1.8	2
318	Single-Molecule Imaging of Cellular Signaling. Springer Series in Biophysics, 2008, , 107-129.	0.4	2
319	Biosynthesis of Lipo-chitin Oligosaccharides: Bacterial Signal Molecules Which Induce Plant Organogenesis. , 1999, , 325-344.		1
320	Application of Mismatch Detection Methods in DNA Computing. Natural Computing, 2006, 5, 151-163.	1.8	1
321	Transcriptome data on maternal RNA of 24 individual zebrafish eggs from five sibling mothers. Data in Brief, 2016, 8, 69-72.	0.5	1
322	COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies. Journal of Proteome Research, 2018, 17, 739-744.	1.8	1
323	Regulatory steps in nodulation by Rhizobium leguminosarum bv viciae. , 1990, , 215-218.		1
324	The Rhizobium Node Protein as a Major Determinant of Host Specificity. NATO ASI Series Series H, Cell Biology, 1989, , 359-366.	0.5	1

#	Article	IF	CITATIONS
325	Biosynthesis and Host Specificity of Rhizobial Lipo-Chitin Oligosaccharide Signal Molecules. , 1997, , 1-26.		1
326	Use of GFP to Study Factors Involved in the Lotus japonicus Symbiosis. , 2000, , 219-222.		1
327	Title is missing!. Plant Molecular Biology, 1998, 38, 917-917.	2.0	Ο
328	The DNA Damage-Regulated Autophagy Modulator DRAM1 Links Mycobacterial Recognition via TLR-MYD88 to Autophagic Defense. Cell Host and Microbe, 2014, 16, 141.	5.1	0
329	Multi-modal 3d reconstruction and measurements of zebrafish larvae and its organs using axial-view microscopy. , 2017, , .		0
330	Application of Mismatch Detection Methods in DNA Computing. Lecture Notes in Computer Science, 2005, , 159-168.	1.0	0
331	Abstract 4295: High-throughput screening of osteosarcoma progression: A zebrafish model. , 2011, , .		0
332	Regulation of Nod Gene Expression: The Role of Nod D Protein. NATO ASI Series Series H, Cell Biology, 1989, , 137-144.	0.5	0
333	Rhizobium Nod Metabolites and Early Nodulin Gene Expression. Current Plant Science and Biotechnology in Agriculture, 1993, , 365-368.	0.0	0
334	Role of rhizobial lipo-oligosacharides in root nodule formation on leguminous plants. , 1994, , 81-89.		0
335	Role of rhizobial lipo-chitin oligosaccharide signal molecules in root nodule organogenesis. , 1994, , 177-186.		0
336	Structural Determination and Biosynthetic Studies of the Rhizobial Nod Metabolites: The Lipo-Chitin Oligosaccharides. , 1996, , 385-401.		0
337	Induction of root cortical cell divisions by heterologous nodulation factors. , 1997, , 47-50.		0
338	Cross-species Discovery of Flubendazole against Melanoma Progression via MITF Downregulation and EMT Inhibition. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-6-31.	0.0	0
339	Abstract 500: A p53/miR-30a/ZEB2 axis controls basal-like/triple-negative breast cancer aggressiveness. , 2018, , .		0
340	Abstract 4109: Multi-modality imaging to interrogate lipidome changes during melanoma progression in zebrafish. , 2018, , .		0