List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9156805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical derivatization of peptides for quantitative proteomics. , 2022, , 75-94.		0
2	pH Dependence of Succinimide-Ester-Based Protein Cross-Linking for Structural Mass Spectrometry Applications. ACS Measurement Science Au, 2022, 2, 132-138.	4.4	1
3	Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
4	Cross-linking and mass spectrometry as a tool for studying the structural biology of ribonucleoproteins. Structure, 2022, 30, 441-461.	3.3	9
5	Structural architecture of the human NALCN channelosome. Nature, 2022, 603, 180-186.	27.8	18
6	Enhancer RNAs stimulate Pol II pause release by harnessing multivalent interactions to NELF. Nature Communications, 2022, 13, 2429.	12.8	19
7	Nucleotide-amino acid π-stacking interactions initiate photo cross-linking in RNA-protein complexes. Nature Communications, 2022, 13, 2719.	12.8	15
8	Expanding the Cross-Link Coverage of a Carboxyl-Group Specific Chemical Cross-Linking Strategy for Structural Proteomics Applications. Analytical Chemistry, 2021, 93, 1944-1950.	6.5	12
9	Structural and functional dissection of reovirus capsid folding and assembly by the prefoldin-TRiC/CCT chaperone network. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
10	Native mass spectrometry analyses of chaperonin complex TRiC/CCT reveal subunit N-terminal processing and re-association patterns. Scientific Reports, 2021, 11, 13084.	3.3	7
11	Puf6 primes 60S pre-ribosome nuclear export at low temperature. Nature Communications, 2021, 12, 4696.	12.8	8
12	The human GID complex engages two independent modules for substrate recruitment. EMBO Reports, 2021, 22, e52981.	4.5	21
13	Single Nucleotide Resolution RNA–Protein Cross-Linking Mass Spectrometry: A Simple Extension of the CLIR-MS Workflow. Analytical Chemistry, 2021, 93, 14626-14634.	6.5	10
14	Molecular architecture of the human tRNA ligase complex. ELife, 2021, 10, .	6.0	22
15	The Polyglutamine Expansion at the N-Terminal of Huntingtin Protein Modulates the Dynamic Configuration and Phosphorylation of the C-Terminal HEAT Domain. Structure, 2020, 28, 1035-1050.e8.	3.3	24
16	The structure and symmetry of radial spoke protein complex in <i>Chlamydomonas</i> flagella. Journal of Cell Science, 2020, 133, .	2.0	14
17	INTS10–INTS13–INTS14 form a functional module of Integrator that binds nucleic acids and the cleavage module. Nature Communications, 2020, 11, 3422.	12.8	44
18	Architecture and functional dynamics of the pentafunctional AROM complex. Nature Chemical Biology, 2020, 16, 973-978.	8.0	8

#	Article	IF	CITATIONS
19	A precisely positioned MED12 activation helix stimulates CDK8 kinase activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2894-2905.	7.1	47
20	Combining Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) Spectroscopy for Integrative Structural Biology of Protein–RNA Complexes. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032359.	5.5	11
21	Assessment of chemicalâ€crosslinkâ€assisted protein structure modeling in CASP13. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1283-1297.	2.6	27
22	CryoEM structures of Arabidopsis DDR complexes involved in RNA-directed DNA methylation. Nature Communications, 2019, 10, 3916.	12.8	31
23	Mitoribosomal small subunit biogenesis in trypanosomes involves an extensive assembly machinery. Science, 2019, 365, 1144-1149.	12.6	61
24	First Community-Wide, Comparative Cross-Linking Mass Spectrometry Study. Analytical Chemistry, 2019, 91, 6953-6961.	6.5	100
25	The Chaperonin TRiC/CCT Associates with Prefoldin through a Conserved Electrostatic Interface Essential for Cellular Proteostasis. Cell, 2019, 177, 751-765.e15.	28.9	98
26	Proteomic identification of a marker signature for <scp>MAPK</scp> i resistance in melanoma. EMBO Journal, 2019, 38, e95874.	7.8	26
27	Structure of a human cap-dependent 48S translation pre-initiation complex. Nucleic Acids Research, 2018, 46, 2678-2689.	14.5	76
28	Integrative Structural Investigation on the Architecture of Human Importin4_Histone H3/H4_Asf1a Complex and Its Histone H3 Tail Binding. Journal of Molecular Biology, 2018, 430, 822-841.	4.2	17
29	A review of the role of chemical modification methods in contemporary mass spectrometry-based proteomics research. Analytica Chimica Acta, 2018, 1000, 2-19.	5.4	26
30	Insights into autophagosome biogenesis from structural and biochemical analyses of the ATG2A-WIPI4 complex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9792-E9801.	7.1	159
31	Molecular basis for disassembly of an importin:ribosomal protein complex by the escortin Tsr2. Nature Communications, 2018, 9, 3669.	12.8	17
32	Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science, 2018, 362, .	12.6	107
33	An Unbiased Screen for Human Cytomegalovirus Identifies Neuropilin-2 as a Central Viral Receptor. Cell, 2018, 174, 1158-1171.e19.	28.9	171
34	Conformational control and DNA-binding mechanism of the metazoan origin recognition complex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5906-E5915.	7.1	34
35	Contribution of Mass Spectrometry-Based Proteomics to the Understanding of TNF-α Signaling. Journal of Proteome Research, 2017, 16, 14-33.	3.7	11
36	Insights into chemoselectivity principles in metal oxide affinity chromatography using tailored nanocast metal oxide microspheres and mass spectrometry-based phosphoproteomics. Analyst, The, 2017, 142, 1993-2003.	3.5	13

#	Article	IF	CITATIONS
37	Structural modeling of protein–RNA complexes using crosslinking of segmentally isotope-labeled RNA and MS/MS. Nature Methods, 2017, 14, 487-490.	19.0	44
38	Molecular Details Underlying Dynamic Structures and Regulation of the Human 26S Proteasome. Molecular and Cellular Proteomics, 2017, 16, 840-854.	3.8	93
39	Mechanistic Insights into Autoinhibition of the Oncogenic Chromatin Remodeler ALC1. Molecular Cell, 2017, 68, 847-859.e7.	9.7	53
40	The mzldentML Data Standard Version 1.2, Supporting Advances in Proteome Informatics. Molecular and Cellular Proteomics, 2017, 16, 1275-1285.	3.8	55
41	Molecular Architecture of Yeast Chromatin Assembly Factor 1. Scientific Reports, 2016, 6, 26702.	3.3	26
42	Mass Spectrometry Applied to Bottom-Up Proteomics: Entering the High-Throughput Era for Hypothesis Testing. Annual Review of Analytical Chemistry, 2016, 9, 449-472.	5.4	266
43	Cross-linking and other structural proteomics techniques: how chemistry is enabling mass spectrometry applications in structural biology. Chemical Science, 2016, 7, 4792-4803.	7.4	38
44	Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines. Trends in Biochemical Sciences, 2016, 41, 20-32.	7.5	330
45	Insertion of the Biogenesis Factor Rei1 Probes the Ribosomal Tunnel during 60S Maturation. Cell, 2016, 164, 91-102.	28.9	97
46	Enrichment Strategies in Phosphoproteomics. Methods in Molecular Biology, 2016, 1355, 105-121.	0.9	45
47	Huntingtin's spherical solenoid structure enables polyglutamine tract-dependent modulation of its structure and function. ELife, 2016, 5, e11184.	6.0	52
48	Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle. ELife, 2016, 5, .	6.0	82
49	Antigenic Characterization of the HCMV gH/gL/gO and Pentamer Cell Entry Complexes Reveals Binding Sites for Potently Neutralizing Human Antibodies. PLoS Pathogens, 2015, 11, e1005230.	4.7	65
50	Molecular Basis of the Rapamycin Insensitivity of Target Of Rapamycin Complex 2. Molecular Cell, 2015, 58, 977-988.	9.7	120
51	The complete structure of the 55 <i>S</i> mammalian mitochondrial ribosome. Science, 2015, 348, 303-308.	12.6	344
52	xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry. Nature Methods, 2015, 12, 1185-1190.	19.0	83
53	Architecture and conformational switch mechanism of the ryanodine receptor. Nature, 2015, 517, 39-43.	27.8	282
54	Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline. Nature Protocols, 2014, 9, 120-137.	12.0	244

#	Article	IF	CITATIONS
55	Conserved Peptide Fragmentation as a Benchmarking Tool for Mass Spectrometers and a Discriminating Feature for Targeted Proteomics. Molecular and Cellular Proteomics, 2014, 13, 2056-2071.	3.8	96
56	A mass spectrometry–based hybrid method for structural modeling of protein complexes. Nature Methods, 2014, 11, 403-406.	19.0	149
57	Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature, 2014, 505, 515-519.	27.8	207
58	The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature, 2014, 515, 283-286.	27.8	231
59	Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9455-9460.	7.1	213
60	Interaction of 2-oxoglutarate dehydrogenase OdhA with its inhibitor OdhI in Corynebacterium glutamicum: Mutants and a model. Journal of Biotechnology, 2014, 191, 99-105.	3.8	26
61	Mass spectrometry supported determination of protein complex structure. Current Opinion in Structural Biology, 2013, 23, 252-260.	5.7	130
62	SnapShot: Mass Spectrometry for Protein and Proteome Analyses. Cell, 2013, 154, 252-252.e1.	28.9	24
63	Cross-Link Guided Molecular Modeling with ROSETTA. PLoS ONE, 2013, 8, e73411.	2.5	144
64	Expanding the Chemical Cross-Linking Toolbox by the Use of Multiple Proteases and Enrichment by Size Exclusion Chromatography. Molecular and Cellular Proteomics, 2012, 11, M111.014126.	3.8	264
65	Structural Probing of a Protein Phosphatase 2A Network by Chemical Cross-Linking and Mass Spectrometry. Science, 2012, 337, 1348-1352.	12.6	357
66	False discovery rate estimation for cross-linked peptides identified by mass spectrometry. Nature Methods, 2012, 9, 901-903.	19.0	273
67	Quantitative high-performance liquid chromatography–tandem mass spectrometry impurity profiling methods for the analysis of parenteral infusion solutions for amino acid supplementation containing l-alanyl-l-glutamine. Journal of Chromatography A, 2012, 1259, 111-120.	3.7	9
68	The Molecular Architecture of the Eukaryotic Chaperonin TRiC/CCT. Structure, 2012, 20, 814-825.	3.3	261
69	Development of an Indole-Based Chemically Cleavable Linker Concept for Immobilizing Bait Compounds for Protein Pull-Down Experiments. Bioconjugate Chemistry, 2011, 22, 211-217.	3.6	6
70	Tools for analyzing the phosphoproteome and other phosphorylated biomolecules: A review. Analytica Chimica Acta, 2011, 703, 19-30.	5.4	86
71	Probing the Phosphoproteome of HeLa Cells Using Nanocast Metal Oxide Microspheres for Phosphopeptide Enrichment. Analytical Chemistry, 2010, 82, 2726-2733.	6.5	63
72	Phosphopeptide enrichment using metal oxide affinity chromatography. TrAC - Trends in Analytical Chemistry, 2010, 29, 177-185.	11.4	147

#	Article	IF	CITATIONS
73	Synthesis, in vitro progesterone receptors affinity of gadolinium containing mifepristone conjugates and estimation of binding sites in human breast cancer cells. Bioorganic and Medicinal Chemistry, 2010, 18, 1891-1898.	3.0	10
74	Probing Native Protein Structures by Chemical Cross-linking, Mass Spectrometry, and Bioinformatics. Molecular and Cellular Proteomics, 2010, 9, 1634-1649.	3.8	407
75	Comparison of toad venoms from different Bufo species by HPLC and LC-DAD-MS/MS. Journal of Ethnopharmacology, 2010, 131, 368-376.	4.1	75
76	Optimizing the performance of tin dioxide microspheres for phosphopeptide enrichment. Analytica Chimica Acta, 2009, 638, 51-57.	5.4	22
77	Applications of Chemical Tagging Approaches in Combination with 2DE and Mass Spectrometry. Methods in Molecular Biology, 2009, 519, 83-101.	0.9	3
78	Chemical Tagging Strategies for Mass Spectrometry-Based Phospho-proteomics. Methods in Molecular Biology, 2009, 527, 229-243.	0.9	32
79	Malondialdehyde tagging improves the analysis of arginine oligomers and arginineâ€containing dendrimers by HPLCâ€MS. Journal of Separation Science, 2008, 31, 499-506.	2.5	10
80	Tin Dioxide Microspheres as a Promising Material for Phosphopeptide Enrichment Prior to Liquid Chromatographyâ€(Tandem) Mass Spectrometry Analysis. Advanced Functional Materials, 2008, 18, 2381-2389.	14.9	68
81	ATF4-dependent transcription is a key mechanism in VEGF up-regulation by oxidized phospholipids: critical role of oxidized sn-2 residues in activation of unfolded protein response. Blood, 2008, 112, 330-339.	1.4	97
82	Photooxidation Generates Biologically Active Phospholipids That Induce Heme Oxygenase-1 in Skin Cells. Journal of Biological Chemistry, 2007, 282, 16934-16941.	3.4	52
83	Reaction of the Indole Group with Malondialdehyde:  Application for the Derivatization of Tryptophan Residues in Peptides. Bioconjugate Chemistry, 2007, 18, 1678-1683.	3.6	34
84	Selective Enrichment of Tryptophan-Containing Peptides from Protein Digests Employing a Reversible Derivatization with Malondialdehyde and Solid-Phase Capture on Hydrazide Beads. Journal of Proteome Research, 2007, 6, 3827-3834.	3.7	29
85	Improving fragmentation of poorly fragmenting peptides and phosphopeptides during collision-induced dissociation by malondialdehyde modification of arginine residues. Journal of Mass Spectrometry, 2007, 42, 950-959.	1.6	31
86	Use of the arginine-specific butanedione/phenylboronic acid tag for analysis of peptides and protein digests using matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 1321-1330.	1.5	16
87	The minimum information about a proteomics experiment (MIAPE). Nature Biotechnology, 2007, 25, 887-893.	17.5	694
88	Influence of Solvent Additive Composition on Chromatographic Separation and Sodium Adduct Formation of Peptides in HPLC–ESI MS. Chromatographia, 2007, 65, 649-653.	1.3	29
89	Identification of Marker Proteins for the Adulteration of Meat Products with Soybean Proteins by Multidimensional Liquid Chromatographyâ^'Tandem Mass Spectrometryâ€. Journal of Proteome Research, 2006, 5, 2424-2430.	3.7	76
90	Chemistry meets proteomics: The use of chemical tagging reactions for MS-based proteomics. Proteomics, 2006, 6, 5418-5434.	2.2	111

#	Article	IF	CITATIONS
91	Silica-based monolithic columns with mixed-mode reversed-phase/weak anion-exchange selectivity principle for high-performance liquid chromatography. Journal of Separation Science, 2006, 29, 966-978.	2.5	51
92	Derivatisation of arginine residues with malondialdehyde for the analysis of peptides and protein digests by LC-ESI-MS/MS. Journal of Mass Spectrometry, 2006, 41, 623-632.	1.6	47
93	Effects of an arginine-selective tagging procedure on the fragmentation behavior of peptides studied by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Analytica Chimica Acta, 2005, 528, 165-173.	5.4	13
94	Solid-phase capture and release of arginine peptides by selective tagging and boronate affinity chromatography. Journal of Chromatography A, 2005, 1079, 187-196.	3.7	25
95	Comparative study on the use of ortho-phthalaldehyde, naphthalene-2,3-dicarboxaldehyde and anthracene-2,3-dicarboxaldehyde reagents for α-amino acids followed by the enantiomer separation of the formed isoindolin-1-one derivatives using quinine-type chiral stationary phases. Journal of Chromatography A. 2005. 1083. 80-88.	3.7	21
96	Functional Probing of Arginine Residues in Proteins Using Mass Spectrometry and an Arginine-Specific Covalent Tagging Concept. Analytical Chemistry, 2005, 77, 4481-4488.	6.5	24
97	Epoxycyclopentenone-Containing Oxidized Phospholipids Restore Endothelial Barrier Function via Cdc42 and Rac. Circulation Research, 2004, 95, 892-901.	4.5	146
98	Current chemical tagging strategies for proteome analysis by mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 813, 1-26.	2.3	109
99	Probing of arginine residues in peptides and proteins using selective tagging and electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2003, 38, 891-899.	1.6	31
100	Comparison of methods for the determination of ochratoxin A in wine. Analytica Chimica Acta, 2002, 453, 33-41.	5.4	94
101	Determination of the metabolites of nitrofuran antibiotics in animal tissue by high-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2001, 939, 49-58.	3.7	210
102	Application of a chromolith speedROD RP-18e HPLC column: Determination of ochratoxin A in different wines by high-performance liquid chromatography-tandem mass spectrometry. Chromatographia, 2000, 52, 818-820.	1.3	83
103	Mapping protein-RNA interactions with single residue resolution by CLIR-MS/MS. Protocol Exchange, 0, , .	0.3	2