Paolo Di Mascio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9156702/publications.pdf Version: 2024-02-01

Ρλοιο Πι Μλεριο

#	Article	IF	CITATIONS
1	Spatial proteomics reveals subcellular reorganization in human keratinocytes exposed to UVA light. IScience, 2022, 25, 104093.	1.9	4
2	Characterization and Quantification of Tryptophan and Tyrosine―Derived Hydroperoxides. Photochemistry and Photobiology, 2022, , .	1.3	1
3	Dehydromethionine is a common product of methionine oxidation by singlet molecular oxygen and hypohalous acids. Free Radical Biology and Medicine, 2022, 187, 17-28.	1.3	3
4	Introduction to the Special Issue Dedicated to Jean Cadet ^{â€} . Photochemistry and Photobiology, 2022, 98, 519-522.	1.3	0
5	<scp>l</scp> â€Tryptophan Interactions with the Horseradish Peroxidaseâ€Catalyzed Generation of Triplet Acetone. Photochemistry and Photobiology, 2021, 97, 327-334.	1.3	3
6	Detection of DNA Adduct Formation in Rat Lungs by a Micro-HPLC/MS/MS Approach. Methods in Molecular Biology, 2021, 2279, 225-239.	0.4	3
7	Nitrogen fertilization and stress factors drive shifts in microbial diversity in soils and plants. Symbiosis, 2021, 84, 379-390.	1.2	20
8	Synthesis and Structural Studies of Two New Anthracene Derivatives. Crystals, 2021, 11, 934.	1.0	1
9	Probiotic Endophytes for More Sustainable Banana Production. Microorganisms, 2021, 9, 1805.	1.6	10
10	HDL proteome remodeling associates with COVID-19 severity. Journal of Clinical Lipidology, 2021, 15, 796-804.	0.6	22
11	A single dose of Ultraviolet-A induces proteome remodeling and senescence in primary human keratinocytes. Scientific Reports, 2021, 11, 23355.	1.6	7
12	Comparing Data-Independent Acquisition and Parallel Reaction Monitoring in Their Abilities To Differentiate High-Density Lipoprotein Subclasses. Journal of Proteome Research, 2020, 19, 248-259.	1.8	13
13	Human cataractous lenses contain cross-links produced by crystallin-derived tryptophanyl and tyrosyl radicals. Free Radical Biology and Medicine, 2020, 160, 356-367.	1.3	15
14	Heck reaction synthesis of anthracene and naphthalene derivatives as traps and clean chemical sources of singlet molecular oxygen in biological systems. Photochemical and Photobiological Sciences, 2020, 19, 1590-1602.	1.6	7
15	Singlet oxygen generation by the reaction of acrolein with peroxynitrite via a 2-hydroxyvinyl radical intermediate. Free Radical Biology and Medicine, 2020, 152, 83-90.	1.3	13
16	Generation of Singlet Molecular Oxygen by Lipid Hydroperoxides and Nitronium Ionâ€. Photochemistry and Photobiology, 2020, 96, 560-569.	1.3	5
17	Singlet oxygenâ€induced protein aggregation: Lysozyme crosslink formation and nLCâ€MS/MS characterization. Journal of Mass Spectrometry, 2019, 54, 894-905.	0.7	7
18	(5′ <i>R</i>)-and (5′ <i>S</i>)-purine 5′,8-cyclo-2′-deoxyribonucleosides: reality or artifactual measurements? A reply to Chatgilialoglu's comments (this issue). Free Radical Research, 2019, 53, 1014-1018.	1.5	3

#	Article	IF	CITATIONS
19	Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chemical Reviews, 2019, 119, 2043-2086.	23.0	404
20	Quantification of three DNA Lesions by Mass Spectrometry and Assessment of Their Levels in Tissues of Mice Exposed to Ambient Fine Particulate Matter. Journal of Visualized Experiments, 2019, , .	0.2	1
21	Enterobacter cloacae, an Endophyte That Establishes a Nutrient-Transfer Symbiosis With Banana Plants and Protects Against the Black Sigatoka Pathogen. Frontiers in Microbiology, 2019, 10, 804.	1.5	51
22	Radiation-induced (5′ <i>R</i>)-and (5′ <i>S</i>)-purine 5′,8-cyclo-2′-deoxyribonucleosides in human c revisited analysis of HPLC-MS/MS measurements. Free Radical Research, 2019, 53, 574-577.	cells: a 1.5	10
23	Singlet molecular oxygen regulates vascular tone and blood pressure in inflammation. Nature, 2019, 566, 548-552.	13.7	84
24	Where do we aspire to publish? A position paper on scientific communication in biochemistry and molecular biology. Brazilian Journal of Medical and Biological Research, 2019, 52, e8935.	0.7	1
25	Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress. Plant Growth Regulation, 2018, 85, 221-229.	1.8	27
26	Oxidation of 1-N 2-etheno-2′-deoxyguanosine by singlet molecular oxygen results in 2′-deoxyguanosine: a pathway to remove exocyclic DNA damage?. Biological Chemistry, 2018, 399, 859-867.	1.2	2
27	DNA Adduct Formation in the Lungs and Brain of Rats Exposed to Low Concentrations of [¹³ C ₂]-Acetaldehyde. Chemical Research in Toxicology, 2018, 31, 332-339.	1.7	16
28	In-vivo electrochemical monitoring of H2O2 production induced by root-inoculated endophytic bacteria in Agave tequilana leaves. Biosensors and Bioelectronics, 2018, 99, 108-114.	5.3	39
29	Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM2.5) from SA£o Paulo city, Brazil. Particle and Fibre Toxicology, 2018, 15, 40.	2.8	52
30	Photosensitized Membrane Permeabilization Requires Contact-Dependent Reactions between Photosensitizer and Lipids. Journal of the American Chemical Society, 2018, 140, 9606-9615.	6.6	133
31	Exercise and β-alanine supplementation on carnosine-acrolein adduct in skeletal muscle. Redox Biology, 2018, 18, 222-228.	3.9	35
32	Formation and repair of oxidatively generated damage in cellular DNA. Free Radical Biology and Medicine, 2017, 107, 13-34.	1.3	240
33	Sustained kidney biochemical derangement in treated experimental diabetes: a clue to metabolic memory. Scientific Reports, 2017, 7, 40544.	1.6	13
34	Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochemistry and Photobiology, 2017, 93, 912-919.	1.3	552
35	Mechanism and color modulation of fungal bioluminescence. Science Advances, 2017, 3, e1602847.	4.7	74
36	Direct participation of DNA in the formation of singlet oxygen and base damage under UVA irradiation. Free Radical Biology and Medicine, 2017, 108, 86-93.	1.3	21

#	Article	IF	CITATIONS
37	Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players. Free Radical Biology and Medicine, 2017, 107, 159-169.	1.3	24
38	Ohr plays a central role in bacterial responses against fatty acid hydroperoxides and peroxynitrite. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E132-E141.	3.3	43
39	Experimental and DFT Computational Insight into Nitrosamine Photochemistry—Oxygen Matters. Journal of Physical Chemistry A, 2017, 121, 5954-5966.	1.1	9
40	Lysozyme oxidation by singlet molecular oxygen: Peptide characterization using [¹⁸ O]″abeling oxygen and nLCâ€MS/MS. Journal of Mass Spectrometry, 2017, 52, 739-751.	0.7	10
41	Structural Elucidation of a Carnosine-Acrolein Adduct and its Quantification in Human Urine Samples. Scientific Reports, 2016, 6, 19348.	1.6	25
42	Singlet molecular oxygen: Düsseldorf – São Paulo, the Brazilian connection. Archives of Biochemistry and Biophysics, 2016, 595, 161-175.	1.4	17
43	Luminescent threat: toxicity of light stick attractors used in pelagic fishery. Scientific Reports, 2015, 4, 5359.	1.6	10
44	Glutathione modifies the oxidation products of 2′-deoxyguanosine by singlet molecular oxygen. Archives of Biochemistry and Biophysics, 2015, 586, 33-44.	1.4	5
45	Mechanism of Photochemical O-Atom Exchange in Nitrosamines with Molecular Oxygen. Journal of Organic Chemistry, 2015, 80, 6119-6127.	1.7	9
46	Cytochrome <i>c</i> Reacts with Cholesterol Hydroperoxides To Produce Lipid- and Protein-Derived Radicals. Biochemistry, 2015, 54, 2841-2850.	1.2	13
47	Chemical Characterization of Urate Hydroperoxide, A Pro-oxidant Intermediate Generated by Urate Oxidation in Inflammatory and Photoinduced Processes. Chemical Research in Toxicology, 2015, 28, 1556-1566.	1.7	20
48	Production of lysozyme and lysozyme-superoxide dismutase dimers bound by a ditryptophan cross-link in carbonate radical-treated lysozyme. Free Radical Biology and Medicine, 2015, 89, 72-82.	1.3	41
49	Singlet Molecular Oxygen Generation by Light-Activated DHN-Melanin of the Fungal Pathogen Mycosphaerella fijiensis in Black Sigatoka Disease of Bananas. PLoS ONE, 2014, 9, e91616.	1.1	71
50	Melanin Photosensitization and the Effect of Visible Light on Epithelial Cells. PLoS ONE, 2014, 9, e113266.	1.1	92
51	Lipid Hydroperoxides as a Source of Singlet Molecular Oxygen. Sub-Cellular Biochemistry, 2014, 77, 3-20.	1.0	19
52	Quantification of Carnosine-Aldehyde Adducts in Human Urine. Free Radical Biology and Medicine, 2014, 75, S27.	1.3	5
53	Cross-linking methionine and amine residues with reactive halogen species. Free Radical Biology and Medicine, 2014, 70, 278-287.	1.3	37
54	Effects of the melanin precursor 5,6-dihydroxy-indole-2-carboxylic acid (DHICA) on DNA damage and repair in the presence of reactive oxygen species. Archives of Biochemistry and Biophysics, 2014, 557, 55-64.	1.4	16

#	Article	IF	CITATIONS
55	Singlet molecular oxygen generated by biological hydroperoxides. Journal of Photochemistry and Photobiology B: Biology, 2014, 139, 24-33.	1.7	120
56	Excited singlet molecular O2 (1î"g) is generated enzymatically from excited carbonyls in the dark. Scientific Reports, 2014, 4, 5938.	1.6	52
57	Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria. Scientific Reports, 2014, 4, 6938.	1.6	61
58	The Self-Assembly of a Cyclic Lipopeptides Mixture Secreted by a B. megaterium Strain and Its Implications on Activity against a Sensitive Bacillus Species. PLoS ONE, 2014, 9, e97261.	1.1	7
59	Covalent Binding and Anchoring of Cytochrome <i>c</i> to Mitochondrial Mimetic Membranes Promoted by Cholesterol Carboxyaldehyde. Chemical Research in Toxicology, 2013, 26, 1536-1544.	1.7	11
60	Elevated α-Methyl-γ-hydroxy-1, <i>N</i> ^{<i>2</i>} -propano-2′-deoxyguanosine Levels in Urinary Samples from Individuals Exposed to Urban Air Pollution. Chemical Research in Toxicology, 2013, 26, 1602-1604.	1.7	14
61	The carbonylation and covalent dimerization of human superoxide dismutase 1 caused by its bicarbonate-dependent peroxidase activity is inhibited by the radical scavenger tempol. Biochemical Journal, 2013, 455, 37-46.	1.7	15
62	UV-Light Effects on Cytochrome C Modulated by the Aggregation State of Phenothiazines. PLoS ONE, 2013, 8, e76857.	1.1	7
63	The Development of a Specific and Sensitive LC-MS-Based Method for the Detection and Quantification of Hydroperoxy- and Hydroxydocosahexaenoic Acids as a Tool for Lipidomic Analysis. PLoS ONE, 2013, 8, e77561.	1.1	38
64	DNA damage by singlet oxygen and cellular protective mechanisms. Mutation Research - Reviews in Mutation Research, 2012, 751, 15-28.	2.4	158
65	Cytochrome c-promoted cardiolipin oxidation generates singlet molecular oxygen. Photochemical and Photobiological Sciences, 2012, 11, 1536-1546.	1.6	32
66	Novel properties of melanins include promotion of DNA strand breaks, impairment of repair, and reduced ability to damage DNA after quenching of singlet oxygen. Free Radical Biology and Medicine, 2012, 52, 1945-1953.	1.3	35
67	Singlet molecular oxygen trapping by the fluorescent probe diethyl-3,3′-(9,10-anthracenediyl)bisacrylate synthesized by the Heck reaction. Photochemical and Photobiological Sciences, 2011, 10, 1546-1555.	1.6	26
68	Mechanism of dioxindolylalanine formation by singlet molecular oxygen-mediated oxidation of tryptophan residues. Photochemical and Photobiological Sciences, 2011, 10, 1727-1730.	1.6	25
69	[¹³ C ₂]- Acetaldehyde Promotes Unequivocal Formation of 1, <i>N</i> ² -Propano-2′-deoxyguanosine in Human Cells. Journal of the American Chemical Society, 2011, 133, 9140-9143.	6.6	62
70	Cholesterol Hydroperoxides Generate Singlet Molecular Oxygen [O ₂ (¹ Δ _g)]: Near-IR Emission, ¹⁸ O-Labeled Hydroperoxides, and Mass Spectrometry. Chemical Research in Toxicology, 2011, 24, 887-895.	1.7	23
71	Generation of Singlet Oxygen by the Glyoxal–Peroxynitrite System. Journal of the American Chemical Society, 2011, 133, 20761-20768.	6.6	30
72	Salinity influences glutathione S-transferase activity and lipid peroxidation responses in the Crassostrea gigas oyster exposed to diesel oil. Science of the Total Environment, 2011, 409, 1976-1983.	3.9	71

#	Article	IF	CITATIONS
73	Lipid hydroperoxide-induced and hemoglobin-enhanced oxidative damage to colon cancer cells. Free Radical Biology and Medicine, 2011, 51, 503-515.	1.3	56
74	Generation of Singlet Molecular Oxygen From Nitroperoxy Lipids. Free Radical Biology and Medicine, 2011, 51, S149.	1.3	0
75	DNA strand breaks and base modifications induced by cholesterol hydroperoxides. Free Radical Research, 2011, 45, 266-275.	1.5	8
76	Measurement of melatonin in body fluids: Standards, protocols and procedures. Child's Nervous System, 2011, 27, 879-891.	0.6	111
77	Cytochrome c modifications promoted by cholesterol hydroperoxides and aldehydes. Chemistry and Physics of Lipids, 2011, 164, S44.	1.5	0
78	The Arabidopsis bZIP Gene AtbZIP63 Is a Sensitive Integrator of Transient Abscisic Acid and Glucose Signals Â. Plant Physiology, 2011, 157, 692-705.	2.3	96
79	Detection and Characterization of Cholesterol-Oxidized Products Using HPLC Coupled to Dopant Assisted Atmospheric Pressure Photoionization Tandem Mass Spectrometry. Analytical Chemistry, 2010, 82, 7293-7301.	3.2	16
80	Characterization of Cytochrome C Modifications Promoted by Cholesterol Carboxyaldehyde. Free Radical Biology and Medicine, 2010, 49, S165.	1.3	0
81	Singlet Molecular Oxygen Generation by the Reaction of Ozone with 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine and Formation of Spiroiminodihydantoin Nucleoside. Free Radical Biology and Medicine, 2010, 49, S213.	1.3	0
82	Single-wall carbon nanotubes modified with organic dyes: Synthesis, characterization and potential cytotoxic effects. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 211, 99-107.	2.0	35
83	Plasmid DNA damage induced by singlet molecular oxygen released from the naphthalene endoperoxide DHPNO2 and photoactivated methylene blue. Quimica Nova, 2010, 33, 279-283.	0.3	11
84	Ultrasensitive Simultaneous Quantification of 1, <i>N</i> ² -Etheno-2′-deoxyguanosine and 1, <i>N</i> ² -Propano-2′-deoxyguanosine in DNA by an Online Liquid Chromatographyâ''Electrospray Tandem Mass Spectrometry Assay. Chemical Research in Toxicology, 2010–23–1245-1255	1.7	25
85	Highly Sensitive Fluorescent Method for the Detection of Cholesterol Aldehydes Formed by Ozone and Singlet Molecular Oxygen. Analytical Chemistry, 2010, 82, 6775-6781.	3.2	19
86	Increased SOD1 association with chromatin, DNA damage, p53 activation, and apoptosis in a cellular model of SOD1-linked ALS. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 462-471.	1.8	68
87	Effect of flavonoids on 2′-deoxyguanosine and DNA oxidation caused by singlet molecular oxygen. Food and Chemical Toxicology, 2010, 48, 2380-2387.	1.8	11
88	Thymine hydroperoxide as a potential source of singlet molecular oxygen in DNA. Free Radical Biology and Medicine, 2009, 47, 401-409.	1.3	33
89	Biflavonoids from Araucaria angustifolia protect against DNA UV-induced damage. Phytochemistry, 2009, 70, 615-620.	1.4	37
90	Characterization of O2 (1Δg)-derived oxidation products of tryptophan: A combination of tandem mass spectrometry analyses and isotopic labeling studies. Journal of the American Society for Mass Spectrometry, 2009, 20, 188-197.	1.2	68

#	Article	IF	CITATIONS
91	Lipopeptides Produced by a Soil Bacillus Megaterium Strain. Microbial Ecology, 2009, 57, 367-78.	1.4	68
92	Generation of Cholesterol Carboxyaldehyde by the Reaction of Singlet Molecular Oxygen [O ₂ (¹ 1" _g)] as Well as Ozone with Cholesterol. Chemical Research in Toxicology, 2009, 22, 875-884.	1.7	60
93	Oxidation and nitration of ribonuclease and lysozyme by peroxynitrite and myeloperoxidase. Archives of Biochemistry and Biophysics, 2009, 484, 127-133.	1.4	18
94	pH-Sensitive Binding of Cytochrome <i>c</i> to the Inner Mitochondrial Membrane. Implications for the Participation of the Protein in Cell Respiration and Apoptosis. Biochemistry, 2009, 48, 8335-8342.	1.2	28
95	Direct evidence of singlet molecular oxygen generation from peroxynitrate, a decomposition product of peroxynitrite. Dalton Transactions, 2009, , 5720.	1.6	50
96	DNA oxidation, strand-breaks and etheno-adducts formation promoted by Cu, Zn-superoxide dismutase–H2O2 in the presence and absence of bicarbonate. Dalton Transactions, 2009, , 1450.	1.6	5
97	Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation. Photochemical and Photobiological Sciences, 2009, 8, 903-911.	1.6	168
98	trans,trans-2,4-decadienal induces mitochondrial dysfunction and oxidative stress. Journal of Bioenergetics and Biomembranes, 2008, 40, 103-109.	1.0	10
99	Mechanistic study of the addition reaction of TeCl4 to alkynes: Participation of TeCl3 centered-radical. Journal of Organometallic Chemistry, 2008, 693, 3558-3562.	0.8	3
100	Tryptophan Oxidation by Singlet Molecular Oxygen [O ₂ (¹ Δ _g)]: Mechanistic Studies Using ¹⁸ O-Labeled Hydroperoxides, Mass Spectrometry, and Light Emission Measurements. Chemical Research in Toxicology, 2008, 21, 1271-1283.	1.7	119
101	Peroxidase Catalytic Cycle of MCM-41-Entrapped Microperoxidase-11 as a Mechanism for Phenol Oxidation. Journal of Nanoscience and Nanotechnology, 2007, 7, 3643-3652.	0.9	15
102	Novel rhythms of N 1 â€acetylâ€N 2 â€formylâ€5â€methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB Journal, 2007, 21, 1724-1729.	0.2	192
103	Covalent Modification of Cytochrome <i>c</i> Exposed to <i>trans</i> , <i>trans</i> -2,4-Decadienal. Chemical Research in Toxicology, 2007, 20, 1099-1110.	1.7	16
104	Spiroiminodihydantoin nucleoside formation from 2′â€deoxyguanosine oxidation by [¹⁸ Oâ€labeled] singlet molecular oxygen in aqueous solution. Journal of Mass Spectrometry, 2007, 42, 1326-1332.	0.7	29
105	Quenching of Singlet Molecular Oxygen, O2(1î"g), by Dipyridamole and Derivatives. Photochemistry and Photobiology, 2007, 83, 1379-1385.	1.3	9
106	Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: Antioxidants, lipid peroxidation and DNA damage. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 146, 588-600.	0.8	214
107	Biological hydroperoxides and singlet molecular oxygen generation. IUBMB Life, 2007, 59, 322-331.	1.5	106
108	Ischemic preconditioning enhances fatty acid-dependent mitochondrial uncoupling. Journal of Bioenergetics and Biomembranes, 2007, 39, 313-320.	1.0	14

#	Article	IF	CITATIONS
109	Reaction route control by microperoxidase-9/CTAB micelle ratios. Physical Chemistry Chemical Physics, 2006, 8, 1963.	1.3	9
110	Organic Tellurium-Centered Radicals Evidenced by EPR Spin Trapping and Mass Spectrometry Experiments:  Insights into the Mechanism of the Hydrotelluration Reaction. Organometallics, 2006, 25, 5059-5066.	1.1	14
111	Photochemically Generated Stable Cation Radical of Phenothiazine Aggregates in Mildly Acid Buffered Solutions. Journal of Physical Chemistry B, 2006, 110, 12257-12265.	1.2	35
112	2â€~-Deoxyguanosine, 2â€~-Deoxycytidine, and 2â€~-Deoxyadenosine Adducts Resulting from the Reaction of Tetrahydrofuran with DNA Bases. Chemical Research in Toxicology, 2006, 19, 927-936.	1.7	35
113	Oxidação de proteÃnas por oxigênio singlete: mecanismos de dano, estratégias para detecção e implicações biológicas. Quimica Nova, 2006, 29, 563-568.	0.3	27
114	Estresse oxidativo, lesões no genoma e processos de sinalização no controle do ciclo celular. Quimica Nova, 2006, 29, 1340-1344.	0.3	21
115	Antioxidant activity of prenylated hydroquinone and benzoic acid derivatives from Piper crassinervium Kunth. Phytochemistry, 2006, 67, 1838-1843.	1.4	57
116	Synthesis of a hydrophilic and non-ionic anthracene derivative, the N,N′-di-(2,3-dihydroxypropyl)-9,10-anthracenedipropanamide as a chemical trap for singlet molecular oxygen detection in biological systems. Tetrahedron, 2006, 62, 10762-10770.	1.0	34
117	Singlet oxygen oxidation of 2′-deoxyguanosine. Formation and mechanistic insights. Tetrahedron, 2006, 62, 10709-10715.	1.0	57
118	Singlet Oxygen Oxidation of Isolated and Cellular DNA: Product Formation and Mechanistic Insights. Photochemistry and Photobiology, 2006, 82, 1219.	1.3	154
119	Linoleic acid hydroperoxide reacts with hypochlorous acid, generating peroxyl radical intermediates and singlet molecular oxygen. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 293-298.	3.3	120
120	Measurement of Melatonin and its Metabolites: Importance for the Evaluation of Their Biological Roles. Endocrine, 2005, 27, 111-118.	2.2	37
121	Inhibition of 5-aminolevulinic acid-induced DNA damage by melatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, quercetin or resveratrol. Journal of Pineal Research, 2005, 38, 107-115.	3.4	83
122	Identification of the main oxidation products of 8-methoxy-2′-deoxyguanosine by singlet molecular oxygen. Free Radical Biology and Medicine, 2005, 38, 1491-1500.	1.3	16
123	Oxidative stress in digestive gland and gill of the brown mussel (Perna perna) exposed to air and re-submersed. Journal of Experimental Marine Biology and Ecology, 2005, 318, 21-30.	0.7	147
124	Biflavonoids from Brazilian pine Araucaria angustifolia as potentials protective agents against DNA damage and lipoperoxidation. Phytochemistry, 2005, 66, 2238-2247.	1.4	47
125	pH-dependent Interaction of Cytochrome c with Mitochondrial Mimetic Membranes. Journal of Biological Chemistry, 2005, 280, 34709-34717.	1.6	102
126	Structural Characterization of an Etheno-2â€~-deoxyguanosine Adduct Modified by Tetrahydrofuran. Chemical Research in Toxicology, 2005, 18, 290-299.	1.7	11

#	Article	IF	CITATIONS
127	Hydroperoxy Fatty Acid Cycling Mediated by Mitochondrial Uncoupling Protein UCP2. Journal of Biological Chemistry, 2004, 279, 53097-53102.	1.6	84
128	Singlet oxygen-mediated damage to cellular DNA determined by the comet assay associated with DNA repair enzymes. Biological Chemistry, 2004, 385, 17-20.	1.2	72
129	Protective effect of phospholipid hydroperoxide glutathione peroxidase (PHGPx) against lipid peroxidation in mussels Perna perna exposed to different metals. Marine Pollution Bulletin, 2004, 49, 386-392.	2.3	148
130	Protonation of two adjacent tyrosine residues influences the reduction of cytochrome c by diphenylacetaldehyde: a possible mechanism to select the reducer agent of heme iron. Free Radical Biology and Medicine, 2004, 36, 802-810.	1.3	12
131	¹⁸ Oâ€Labeled lipid hydroperoxides and HPLC coupled to mass spectrometry as valuable tools for studying the generation of singlet oxygen in biological system. BioFactors, 2004, 22, 333-339.	2.6	7
132	Synthesis of internal labeled standards of melatonin and its metabolite N1-acetyl-N2-formyl-5-methoxykynuramine for their quantification using an on-line liquid chromatography-electrospray tandem mass spectrometry system. Journal of Pineal Research, 2004, 36, 64-71.	3.4	26
133	Production of the Carbonate Radical Anion during Xanthine Oxidase Turnover in the Presence of Bicarbonate. Journal of Biological Chemistry, 2004, 279, 51836-51843.	1.6	76
134	Structural Characterization of Diastereoisomeric Ethano Adducts Derived from the Reaction of 2â€ ⁻ -Deoxyguanosine withtrans,trans-2,4-Decadienal. Chemical Research in Toxicology, 2004, 17, 641-649.	1.7	15
135	Changes in the Spin State and Reactivity of Cytochrome c Induced by Photochemically Generated Singlet Oxygen and Free Radicals. Journal of Biological Chemistry, 2004, 279, 39214-39222.	1.6	59
136	Energy Transfer between Singlet (1Δg) and Triplet (3Σg-) Molecular Oxygen in Aqueous Solution. Journal of the American Chemical Society, 2004, 126, 3056-3057.	6.6	30
137	Mechanistic aspects of the oxidation of DNA constituents mediated by singlet molecular oxygen. Archives of Biochemistry and Biophysics, 2004, 423, 23-30.	1.4	70
138	Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid. Archives of Biochemistry and Biophysics, 2004, 432, 178-187.	1.4	60
139	Induction of 1,N 2 -etheno-2′-deoxyguanosine in DNA exposed to β-carotene oxidation products. FEBS Letters, 2004, 560, 125-130.	1.3	20
140	DNA and Lipid Damage in the Brown Mussel Perna perna from a Contaminated Site. Bulletin of Environmental Contamination and Toxicology, 2003, 71, 270-275.	1.3	15
141	Effects of trace metal and exposure to air on serotonin and dopamine levels in tissues of the mussel Perna perna. Marine Pollution Bulletin, 2003, 46, 1485-1490.	2.3	31
142	Direct evidence of singlet molecular oxygen [O2(1î"g)] production in the reaction of acetonitrile with hydrogen peroxide in alkaline solutions. Analytica Chimica Acta, 2003, 482, 99-104.	2.6	20
143	Site-specific incorporation of the 1-hexanol-1,N6-etheno- $2\hat{a}\in^2$ -deoxyadenosine adduct into oligodeoxyribonucleotides. Bioorganic and Medicinal Chemistry, 2003, 11, 2445-2452.	1.4	4
144	Oxidation of melatonin by singlet molecular oxygen (O2(1Deltag)) produces N1-acetyl-N2-formyl-5-methoxykynurenine. Journal of Pineal Research, 2003, 35, 131-137.	3.4	73

#	Article	IF	CITATIONS
145	Singlet Molecular Oxygen Generated from Lipid Hydroperoxides by the Russell Mechanism:  Studies Using 18O-Labeled Linoleic Acid Hydroperoxide and Monomol Light Emission Measurements. Journal of the American Chemical Society, 2003, 125, 6172-6179.	6.6	189
146	Oxidative and alkylating damage in DNA. Mutation Research - Reviews in Mutation Research, 2003, 544, 115-127.	2.4	190
147	DNA damage in digestive gland and mantle tissue of the mussel Perna perna. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2003, 135, 295-303.	1.3	22
148	Direct Evidence of Singlet Molecular Oxygen [O2 (1î"g)] Production in the Reaction of Linoleic Acid Hydroperoxide with Peroxynitrite. Journal of the American Chemical Society, 2003, 125, 4510-4517.	6.6	138
149	Cholesteryl nitrolinoleate, a nitrated lipid present in human blood plasma and lipoproteins. Journal of Lipid Research, 2003, 44, 1660-1666.	2.0	63
150	[180]-Labeled Singlet Oxygen as a Tool for Mechanistic Studies of 8-Oxo-7,8-Dihydroguanine Oxidative Damage: Detection of Spiroiminodihydantoin, Imidazolone and Oxazolone Derivatives. Biological Chemistry, 2002, 383, 607-17.	1.2	66
151	Development of an On-Line Liquid Chromatography-Electrospray Tandem Mass Spectrometry Assay to Quantitatively Determine 1,N2-Etheno-2'-deoxyguanosine in DNA. Chemical Research in Toxicology, 2002, 15, 1302-1308.	1.7	46
152	Characterization of Linoleic Acid Nitration in Human Blood Plasma by Mass Spectrometry. Biochemistry, 2002, 41, 10717-10722.	1.2	96
153	Cytotoxicity and mutagenesis induced by singlet oxygen in wild type and DNA repair deficient Escherichia coli strains. DNA Repair, 2002, 1, 1051-1056.	1.3	23
154	Danos ao DNA promovidos por ácido 5-aminolevulÃnico: possÃvel associação com o desenvolvimento de carcinoma hepatocelular em portadores de porfiria aguda intermitente. Quimica Nova, 2002, 25, 594-608.	0.3	5
155	Formação de adutos exocÃclicos com bases de DNA: implicações em mutagênese e carcinogênese. Quimica Nova, 2002, 25, 777-793.	0.3	17
156	Oxidative stress in the mussel Mytella guyanensis from polluted mangroves on Santa Catarina Island, Brazil. Marine Pollution Bulletin, 2002, 44, 923-932.	2.3	182
157	Genotoxicity of 5-aminolevulinic and 4,5-dioxovaleric acids in the salmonella/microsuspension mutagenicity assay and SOS chromotest. Environmental and Molecular Mutagenesis, 2002, 40, 63-70.	0.9	9
158	Mitochondrial permeability transition induced by chemically generated singlet oxygen. Journal of Bioenergetics and Biomembranes, 2002, 34, 157-163.	1.0	16
159	Is 5-aminolevulinic acid involved in the hepatocellular carcinogenesis of acute intermittent porphyria?. Cellular and Molecular Biology, 2002, 48, 17-26.	0.3	16
160	Lycopene Inhibits DNA Damage and Liver Necrosis in Rats Treated with Ferric Nitrilotriacetate. Archives of Biochemistry and Biophysics, 2001, 396, 171-177.	1.4	92
161	DNA Damage by 3,6-Dihydropyrazine-2,5-Dipropanoic Acid, the Cyclic Dimerization Product of 5-Aminolevulinic Acid. Biological Chemistry, 2001, 382, 913-8.	1.2	25
162	Singlet Molecular Oxygen Triggers the soxRS Regulon of Escherichia coli. Biological Chemistry, 2001, 382, 1071-1075.	1.2	16

#	Article	IF	CITATIONS
163	DNA repair and sequence context affect 1O2-induced mutagenesis in bacteria. Nucleic Acids Research, 2001, 29, 2899-2903.	6.5	18
164	1,N 6-Etheno-2'-Deoxyadenosine Adducts from Trans, Trans-2,4-Decadienal and Trans-2-Octenal. Advances in Experimental Medicine and Biology, 2001, 500, 229-232.	0.8	7
165	Singlet oxygen induces oxidation of cellular DNA Journal of Biological Chemistry, 2001, 276, 6056.	1.6	29
166	Ghost protein damage by peroxynitrite and its protection by melatonin. Brazilian Journal of Medical and Biological Research, 2000, 33, 11-17.	0.7	16
167	Zinc tetraruthenated porphyrin binding and photoinduced oxidation of calf-thymus DNA. Journal of Inorganic Biochemistry, 2000, 78, 269-273.	1.5	42
168	Peroxynitrite does not decompose to singlet oxygen (1Delta gO2) and nitroxyl (NO-). Proceedings of the United States of America, 2000, 97, 10307-10312.	3.3	87
169	DNA Damage by 5-Aminolevulinic and 4,5-Dioxovaleric Acids in the Presence of Ferritin. Archives of Biochemistry and Biophysics, 2000, 373, 368-374.	1.4	44
170	Protective Effect of Lycopene on Lipid Peroxidation and Oxidative DNA Damage in Cell Culture. Archives of Biochemistry and Biophysics, 2000, 383, 56-59.	1.4	126
171	Peridinin as the Major Biological Carotenoid Quencher of Singlet Oxygen in Marine Algae Gonyaulax polyedra. Biochemical and Biophysical Research Communications, 2000, 268, 496-500.	1.0	50
172	Singlet Oxygen Induces Oxidation of Cellular DNA. Journal of Biological Chemistry, 2000, 275, 40601-40604.	1.6	260
173	[1] Naphthalene endoperoxides as generators of singlet oxygen in biological media. Methods in Enzymology, 2000, 319, 3-20.	0.4	85
174	Novel 1,N6-Etheno-2â€ [~] -deoxyadenosine Adducts from Lipid Peroxidation Products. Chemical Research in Toxicology, 2000, 13, 397-405.	1.7	46
175	trans,trans-2,4-Decadienal-Induced 1,N2-Etheno-2â€~-deoxyguanosine Adduct Formation. Chemical Research in Toxicology, 2000, 13, 601-609.	1.7	81
176	Oxaluric Acid as the Major Product of Singlet Oxygen-Mediated Oxidation of 8-Oxo-7,8-dihydroguanine in DNA. Journal of the American Chemical Society, 2000, 122, 12622-12628.	6.6	127
177	Synthesis of a Naphthalene Endoperoxide as a Source of18O-labeled Singlet Oxygen for Mechanistic Studies. Journal of the American Chemical Society, 2000, 122, 10212-10213.	6.6	105
178	Utilização de endoperóxidos de derivados de naftaleno como fontes quÃmicas de oxigênio singlete em sistemas biológicos. Quimica Nova, 2000, 23, 686-689.	0.3	9
179	Measurement of 4,5-dioxovaleric acid by high-performance liquid chromatography and fluorescence detection. Biomedical Applications, 1999, 729, 237-243.	1.7	4
180	Mutation Spectrum Induced by Singlet Oxygen in Escherichia coli Deficient in Exonuclease III. Photochemistry and Photobiology, 1999, 70, 505-511.	1.3	16

#	Article	IF	CITATIONS
181	PREVENTION OF SINGLET OXYGEN DAMAGE IN 2'-DEOXYGUANOSINE BY LYCOPENE ENTRAPPED IN HUMAN ALBUMIN. , 1999, , 234-237.		0
182	Supramolecular Cationic Tetraruthenated Porphyrin and Lightâ€Induced Decomposition of 2â€Deoxyguanosine Predominantly Via a Singlet Oxygenâ€Mediated Mechanism. Photochemistry and Photobiology, 1998, 68, 698-702.	1.3	11
183	Hydroxyl radicals are involved in the oxidation of isolated and cellular DNA bases by 5-aminolevulinic acid. FEBS Letters, 1998, 428, 93-96.	1.3	72
184	DNA Alkylation by 4,5-Dioxovaleric Acid, the Final Oxidation Product of 5-Aminolevulinic Acid. Chemical Research in Toxicology, 1998, 11, 150-157.	1.7	58
185	Formation of 1,N6-Etheno-2â€~-deoxyadenosine Adducts bytrans,trans-2,4-Decadienal. Chemical Research in Toxicology, 1998, 11, 1042-1047.	1.7	22
186	Lipid Peroxidation-Dependent Chemiluminescence from the Cyclization of Alkylperoxyl Radicals to Dioxetane Radical Intermediates. Chemical Research in Toxicology, 1997, 10, 1090-1096.	1.7	45
187	Peroxidase Activity May Play a Role in the Cytotoxic Effect of Indole Acetic Acid*. Photochemistry and Photobiology, 1997, 65, 338-341.	1.3	26
188	Quenching of singlet molecular oxygen by natural furan diterpenes. Journal of Photochemistry and Photobiology B: Biology, 1997, 38, 169-173.	1.7	14
189	[37] Reaction of peroxynitrite and hydrogen peroxide to produce singlet molecular oxygen (1î"g). Methods in Enzymology, 1996, 269, 395-400.	0.4	11
190	Supramolecular Cationic Tetraruthenated Porphyrin Induces Singleâ€Strand Breaks and 8â€Oxoâ€7,8â€dihydroâ€2â€deoxyguanosine Formation in DNA in the Presence of Light. Photochemistry and Photobiology, 1996, 63, 272-277.	1.3	69
191	Horseradish Peroxidase-Catalyzed Conjugation of Eugenol with Basic Amino Acids. Free Radical Research, 1996, 25, 5-12.	1.5	10
192	Involvement of Escherichia coli exonuclease III and endonuclease IV in the repair of singlet oxygen-induced DNA damage. Carcinogenesis, 1996, 17, 1183-1185.	1.3	20
193	Diurnal Rhythm of β-Carotene in Photosynthetic AlgaGonyaulax polyedra. Biological Chemistry Hoppe-Seyler, 1995, 376, 297-302.	1.4	14
194	5-Aminolevulinic acid mediates the in vivo and in vitro formation of 8-hydroxy-2'-deoxyguanosine in DNA. Carcinogenesis, 1994, 15, 2241-2244.	1.3	56
195	VISIBLE CHEMILUMINESCENCE ASSOCIATED WITH THE REACTION BETWEEN METHEMOGLOBIN OR OXYHEMOGLOBIN WITH HYDROGEN PEROXIDE. Photochemistry and Photobiology, 1994, 60, 405-411.	1.3	15
196	Catabolism of 5-Aminolevulinic Acid to CO2 by Rat Liver Mitochondria. Archives of Biochemistry and Biophysics, 1994, 310, 205-209.	1.4	6
197	Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide. FEBS Letters, 1994, 355, 287-289.	1.3	142
198	5-Aminolevulinic acid induces single-strand breaks in plasmid pBR322 DNA in the presence of Fe2+ ions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1994, 1225, 259-263.	1.8	43

#	Article	IF	CITATIONS
199	Singlet Oxygen Induces Predominantly G to T Transversions on a Single-Stranded Shuttle Vector Replicated in Monkey Cells. Free Radical Research, 1994, 21, 75-83.	1.5	19
200	Singlet Oxygen induced mutation spectrum in mammalian cells. Nucleic Acids Research, 1992, 20, 4319-4323.	6.5	53
201	DNA synthesis blocking lesions induced by singlet oxygen are targeted to deoxyguanosines. Nucleic Acids Research, 1992, 20, 2465-2469.	6.5	23
202	Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11428-11430.	3.3	119
203	[40] Assay of lycopene and other carotenoids as singlet oxygen quenchers. Methods in Enzymology, 1992, 213, 429-438.	0.4	48
204	Dioxygen NIR FT-Emission (1Δg → 3Σâ"g) and Raman Spectra of 1,4-Dimethylnaphthalene Endoperoxide: A Source of Singlet Molecular Oxygen. Applied Spectroscopy, 1992, 46, 236-239.	1.2	22
205	Are dioxetanes chemiluminescent intermediates in lipoperoxidation?. Free Radical Biology and Medicine, 1992, 12, 471-478.	1.3	29
206	SINGLET OXYGEN INDUCED DNA DAMAGE AND MUTAGENICITY IN A SINGLE-STRANDED SV40-BASED SHUTTLE VECTOR. Photochemistry and Photobiology, 1992, 55, 39-45.	1.3	40
207	Singlet oxygen induced single-strand breaks in plasmid pBR322 DNA: the enhancing effect of thiols. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1088, 409-412.	2.4	46
208	Activity of thiols as singlet molecular oxygen quenchers. Journal of Photochemistry and Photobiology B: Biology, 1991, 9, 105-116.	1.7	148
209	Biological Significance of Active Oxygen Species: In Vitro Studies on Singlet Oxygen-Induced DNA Damage and on the Singlet Oxygen Quenching Ability of Carotenoids, Tocopherols and Thiols. Advances in Experimental Medicine and Biology, 1991, 283, 71-77.	0.8	19
210	CAROTENOIDS, TOCOPHEROLS AND THIOLS AS BIOLOGICAL SINGLET OXYGEN QUENCHERS. , 1991, , 311-314.		0
211	Quenching of Singlet Molecular Oxygen by Tocopherols. Advances in Experimental Medicine and Biology, 1990, 264, 117-124.	0.8	3
212	Carotenoids, tocopherols and thiols as biological singlet molecular oxygen quenchers. Biochemical Society Transactions, 1990, 18, 1054-1056.	1.6	245
213	Physical and chemical scavenging of singlet molecular oxygen by tocopherols. Archives of Biochemistry and Biophysics, 1990, 277, 101-108.	1.4	144
214	Quantification of singlet oxygen generated by thermolysis of 3,3'-(1,4-naphthylene)dipropionate endoperoxide. Monomol and dimol photoemission and the effects of 1,4-diazabicyclo[2.2.2]octane. Journal of the American Chemical Society, 1989, 111, 2909-2914.	6.6	174
215	Singlet molecular oxygen causes loss of biological activity in plasmid and bacteriophage DNA and induces single-strand breaks. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1989, 1007, 151-157.	2.4	99
216	Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Archives of Biochemistry and Biophysics, 1989, 274, 532-538.	1.4	1,975

#	Article	IF	CITATIONS
217	Peroxides in Biological Systems. , 0, , 915-999.		12