
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9156585/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of retinoic acid signaling on <i>Ripply3</i> expression and pharyngeal arch morphogenesis in mouse embryos. Developmental Dynamics, 2021, 250, 1036-1050.	0.8	2
2	Quantitative analyses reveal extracellular dynamics of Wnt ligands in Xenopus embryos. ELife, 2021, 10,	2.8	14
3	Regulation of Wnt/PCP signaling through p97/VCP-KBTBD7–mediated Vangl ubiquitination and endoplasmic reticulum–associated degradation. Science Advances, 2021, 7, .	4.7	21
4	Morphological and Functional Changes of Roof Plate Cells in Spinal Cord Development. Journal of Developmental Biology, 2021, 9, 30.	0.9	9
5	Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis. Nature Communications, 2021, 12, 7145.	5.8	30
6	PKN1 promotes synapse maturation by inhibiting mGluR-dependent silencing through neuronal glutamate transporter activation. Communications Biology, 2020, 3, 710.	2.0	6
7	Improvement of Phycocyanobilin Synthesis for Genetically Encoded Phytochrome-Based Optogenetics. ACS Chemical Biology, 2020, 15, 2896-2906.	1.6	22
8	Heparan Sulfate Proteoglycan Clustering in Wnt Signaling and Dispersal. Frontiers in Cell and Developmental Biology, 2020, 8, 631.	1.8	27
9	The second pharyngeal pouch is generated by dynamic remodeling of endodermal epithelium in zebrafish. Development (Cambridge), 2020, 147, .	1.2	6
10	Transcriptional autoregulation of zebrafish <i>tbx6</i> is required for somite segmentation. Development (Cambridge), 2019, 146, .	1.2	9
11	Wnt produced by stretched roof-plate cells is required for the promotion of cell proliferation around the central canal of the spinal cord. Development (Cambridge), 2019, 146, .	1.2	30
12	Novel components of germline sex determination acting downstream of foxl3 in medaka. Developmental Biology, 2019, 445, 80-89.	0.9	17
13	<i>Ripply3</i> is required for the maintenance of epithelial sheets in the morphogenesis of pharyngeal pouches. Development Growth and Differentiation, 2018, 60, 87-96.	0.6	3
14	Assembly of protein complexes restricts diffusion of Wnt3a proteins. Communications Biology, 2018, 1, 165.	2.0	23
15	Functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior presomitic mesoderm in zebrafish. Mechanisms of Development, 2018, 152, 21-31.	1.7	8
16	SHISA6 Confers Resistance to Differentiation-Promoting Wnt/β-Catenin Signaling in Mouse Spermatogenic Stem Cells. Stem Cell Reports, 2017, 8, 561-575.	2.3	79
17	Roles of two types of heparan sulfate clusters in Wnt distribution and signaling in Xenopus. Nature Communications, 2017, 8, 1973.	5.8	38
18	Differences in the secretion and transport of Wnt proteins. Journal of Biochemistry, 2017, 161, 1-7.	0.9	39

#	Article	IF	CITATIONS
19	<i>Mesp</i> quadruple zebrafish mutant reveals different roles of <i>mesp</i> genes in somite segmentation between mouse and zebrafish. Development (Cambridge), 2016, 143, 2842-52.	1.2	37
20	Axial levelâ€dependent molecular and cellular mechanisms underlying the genesis of the embryonic neural plate. Development Growth and Differentiation, 2016, 58, 427-436.	0.6	15
21	Nontrivial Effect of the Color-Exchange of a Donor/Acceptor Pair in the Engineering of Förster Resonance Energy Transfer (FRET)-Based Indicators. ACS Chemical Biology, 2016, 11, 1816-1822.	1.6	21
22	R26â€WntVis reporter mice showing graded response to Wnt signal levels. Genes To Cells, 2016, 21, 661-669.	0.5	14
23	Molecular mechanism for cyclic generation of somites: Lessons from mice and zebrafish. Development Growth and Differentiation, 2016, 58, 31-42.	0.6	31
24	Different populations of Wnt-containing vesicles are individually released from polarized epithelial cells. Scientific Reports, 2016, 6, 35562.	1.6	52
25	Reiterative expression of <i>pax1</i> directs pharyngeal pouch segmentation in medaka (<i>Oryzias) Tj ETQq1</i>	1 0.784314 1.2	∔rgBT /Overla
26	Posterior–anterior gradient of zebrafish hes6 expression in the presomitic mesoderm is established by the combinatorial functions of the downstream enhancer and 3′UTR. Developmental Biology, 2016, 409, 543-554.	0.9	6
27	Pharyngeal arch deficiencies affect taste bud development in the circumvallate papilla with aberrant glossopharyngeal nerve formation. Developmental Dynamics, 2015, 244, 874-887.	0.8	7
28	Genome Editing in Zebrafish and Medaka. , 2015, , 119-131.		2
29	Notch signaling regulates venous arterialization during zebrafish fin regeneration. Genes To Cells, 2015, 20, 427-438.	0.5	17
30	Tbx Protein Level Critical for Clock-Mediated Somite Positioning Is Regulated through Interaction between Tbx and Ripply. PLoS ONE, 2014, 9, e107928.	1.1	27
31	Leucophores are similar to xanthophores in their specification and differentiation processes in medaka. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7343-7348.	3.3	83
32	<i>Insm1</i> promotes endocrine cell differentiation by modulating the expression of a network of genes that includes <i>Neurog3</i> and <i>Ripply3</i> . Development (Cambridge), 2014, 141, 2939-2949.	1.2	63
33	Metameric pattern of intervertebral disc/vertebral body is generated independently of Mesp2/Ripply-mediated rostro-caudal patterning of somites in the mouse embryo. Developmental Biology, 2013, 380, 172-184.	0.9	20
34	Functional cooperation of spns2 and fibronectin in cardiac and lower jaw development. Biology Open, 2013, 2, 789-794.	0.6	24
35	Deficiency of Porcupine, an O-acyltransferase gene, impairs convergent extension during gastrulation in zebrafish embryos and does not affect equivalently the trafficking of different Wnt proteins Journal of Cell Science, 2012, 125, 2224-34.	1.2	24
36	Mesogenin causes embryonic mesoderm progenitors to differentiate during development of zebrafish tail somites. Developmental Biology, 2012, 370, 213-222.	0.9	42

#	Article	IF	CITATIONS
37	Development and Fibronectin Signaling Requirements of the Zebrafish Interrenal Vessel. PLoS ONE, 2012, 7, e43040.	1.1	23
38	Loss of Porcupine impairs convergent extension during gastrulation in zebrafish. Development (Cambridge), 2012, 139, e1-e1.	1.2	1
39	Ripply3, a Tbx1 repressor, is required for development of the pharyngeal apparatus and its derivatives in mice. Development (Cambridge), 2011, 138, 339-348.	1.2	60
40	Wnt3a Promotes Hippocampal Neurogenesis by Shortening Cell Cycle Duration of Neural Progenitor Cells. Cellular and Molecular Neurobiology, 2010, 30, 1049-1058.	1.7	32
41	Planar polarization of node cells determines the rotational axis of node cilia. Nature Cell Biology, 2010, 12, 170-176.	4.6	190
42	Ror2/Frizzled Complex Mediates Wnt5a-Induced AP-1 Activation by Regulating Dishevelled Polymerization. Molecular and Cellular Biology, 2010, 30, 3610-3619.	1.1	157
43	Modulation of Wnt signaling by the nuclear localization of cellular FLIP-L. Journal of Cell Science, 2010, 123, 23-28.	1.2	26
44	A novel regulatory mechanism for Fgf18 signaling involving cysteine-rich FGF receptor (Cfr) and delta-like protein (Dlk). Development (Cambridge), 2010, 137, 159-167.	1.2	23
45	Analysis of Ripply1/2-deficient mouse embryos reveals a mechanism underlying the rostro-caudal patterning within a somite. Developmental Biology, 2010, 342, 134-145.	0.9	55
46	Motor Neurons with Axial Muscle Projections Specified by Wnt4/5 Signaling. Neuron, 2009, 61, 708-720.	3.8	93
47	Activator-to-Repressor Conversion of T-Box Transcription Factors by the Ripply Family of Groucho/TLE-Associated Mediators. Molecular and Cellular Biology, 2008, 28, 3236-3244.	1.1	60
48	Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression. Development (Cambridge), 2008, 135, 237-247.	1.2	170
49	Stabilized Î ² -Catenin Functions through TCF/LEF Proteins and the Notch/RBP-JÎ [®] Complex To Promote Proliferation and Suppress Differentiation of Neural Precursor Cells. Molecular and Cellular Biology, 2008, 28, 7427-7441.	1.1	163
50	Impairment of the ubiquitin-proteasome system by cellular FLIP. Genes To Cells, 2007, 12, 070606122915005-???.	0.5	21
51	A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-Î ³ transactivation. Nature Cell Biology, 2007, 9, 1273-1285.	4.6	400
52	Paf1 complex homologues are required for Notchâ€regulated transcription during somite segmentation. EMBO Reports, 2007, 8, 858-863.	2.0	53
53	Determinative role of Wnt signals in dorsal iris-derived lens regeneration in newt eye. Mechanisms of Development, 2006, 123, 793-800.	1.7	49
54	Monounsaturated Fatty Acid Modification of Wnt Protein: Its Role in Wnt Secretion. Developmental Cell, 2006, 11, 791-801.	3.1	671

#	Article	IF	CITATIONS
55	Activation of Canonical Wnt Pathway Promotes Proliferation of Retinal Stem Cells Derived from Adult Mouse Ciliary Margin. Stem Cells, 2006, 24, 95-104.	1.4	72
56	Grainyhead-related transcription factor is required for duct maturation in the salivary gland and the kidney of the mouse. Development (Cambridge), 2006, 133, 4737-4748.	1.2	58
57	Wilms' tumor 1-associating protein regulates G2/M transition through stabilization of cyclin A2 mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17278-17283.	3.3	132
58	Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. Journal of Cell Biology, 2006, 175, 555-562.	2.3	187
59	Wnt10a is involved in AER formation during chick limb development. Developmental Dynamics, 2005, 233, 282-287.	0.8	34
60	Gene trap screening as an effective approach for identification of Wnt-responsive genes in the mouse embryo. Developmental Dynamics, 2005, 233, 484-495.	0.8	11
61	Viral FLIP Enhances Wnt Signaling Downstream of Stabilized β-Catenin, Leading to Control of Cell Growth. Molecular and Cellular Biology, 2005, 25, 9249-9258.	1.1	32
62	Regulation of Mammalian Tooth Cusp Patterning by Ectodin. Science, 2005, 309, 2067-2070.	6.0	256
63	Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes and Development, 2005, 19, 1612-1623.	2.7	224
64	Analysis of combinatorial effects of Wnts and Frizzleds on beta-catenin/armadillo stabilization and Dishevelled phosphorylation. Genes To Cells, 2005, 10, 919-928.	0.5	52
65	Zebrafish Hairy/Enhancer of split protein links FGF signaling to cyclic gene expression in the periodic segmentation of somites. Genes and Development, 2005, 19, 1156-1161.	2.7	90
66	Integrinα5-Dependent Fibronectin Accumulation for Maintenance of Somite Boundaries in Zebrafish Embryos. Developmental Cell, 2005, 8, 587-598.	3.1	165
67	Groucho-Associated Transcriptional Repressor Ripply1 Is Required for Proper Transition from the Presomitic Mesoderm to Somites. Developmental Cell, 2005, 9, 735-744.	3.1	80
68	Wnt signaling controls the timing of oligodendrocyte development in the spinal cord. Developmental Biology, 2005, 282, 397-410.	0.9	144
69	Cellular FLIP Inhibits β-Catenin Ubiquitylation and Enhances Wnt Signaling. Molecular and Cellular Biology, 2004, 24, 8418-8427.	1.1	47
70	Laminar Patterning in the Developing Neocortex by Temporally Coordinated Fibroblast Growth Factor Signaling. Journal of Neuroscience, 2004, 24, 8711-8719.	1.7	89
71	Anteriorization of neural fate by inhibitor of Â-catenin and T cell factor (ICAT), a negative regulator of Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8017-8021.	3.3	54
72	R-spondin, a novel gene with thrombospondin type 1 domain, was expressed in the dorsal neural tube and affected in Wnts mutants. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1676, 51-62.	2.4	129

#	Article	IF	CITATIONS
73	Wnt proteins promote neuronal differentiation in neural stem cell culture. Biochemical and Biophysical Research Communications, 2004, 313, 915-921.	1.0	129
74	Fgf18 is required for embryonic lung alveolar development. Biochemical and Biophysical Research Communications, 2004, 322, 887-892.	1.0	78
75	The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes To Cells, 2003, 8, 645-654.	0.5	651
76	Identification of the laminar-inducing factor: Wnt-signal from the anterior rim induces correct laminar formation of the neural retina in vitro. Developmental Biology, 2003, 260, 414-425.	0.9	65
77	Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 229-234.	3.3	382
78	Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord. Genes and Development, 2002, 16, 548-553.	2.7	251
79	FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes and Development, 2002, 16, 870-879.	2.7	424
80	JNK functions in the nonâ€canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Reports, 2002, 3, 69-75.	2.0	394
81	Wnt/?-catenin signaling suppresses apoptosis in low serum medium and induces morphologic change in rodent fibroblasts. International Journal of Cancer, 2002, 99, 681-688.	2.3	31
82	Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nature Cell Biology, 2002, 4, 323-327.	4.6	278
83	p73β, a Variant of p73, Enhances Wnt/β-Catenin Signaling in Saos-2 Cells. Biochemical and Biophysical Research Communications, 2001, 283, 327-333.	1.0	22
84	Genomic Organization of the Shc-Related Phosphotyrosine Adapters and Characterization of the Full-Length Sck/ShcB: Specific Association of p68-Sck/ShcB with pp135. Biochemical and Biophysical Research Communications, 2001, 284, 1039-1047.	1.0	20
85	Identification of a PDZ Domain Containing Golgi Protein, GOPC, as an Interaction Partner of Frizzled. Biochemical and Biophysical Research Communications, 2001, 286, 771-778.	1.0	78
86	Wnt and BMP Signaling Govern Lineage Segregation of Melanocytes in the Avian Embryo. Developmental Biology, 2001, 233, 22-37.	0.9	174
87	Wnt-3a is required for somite specification along the anteroposterior axis of the mouse embryo and for regulation of cdx-1 expression. Mechanisms of Development, 2001, 103, 27-33.	1.7	130
88	Expression of the receptor tyrosine kinase genes, Ror1 and Ror2, during mouse development. Mechanisms of Development, 2001, 105, 153-156.	1.7	130
89	Expression of vinexin \hat{I}_{\pm} in the dorsal half of the eye and in the cardiac outflow tract and atrioventricular canal. Mechanisms of Development, 2001, 106, 147-150.	1.7	19
90	Low-Density Lipoprotein Receptor-Related Protein-5 Binds to Axin and Regulates the Canonical Wnt Signaling Pathway. Molecular Cell, 2001, 7, 801-809.	4.5	756

#	Article	IF	CITATIONS
91	Inhibitory effect of a presenilin 1 mutation on the Wnt signalling pathway by enhancement of β-catenin phosphorylation. FEBS Journal, 2001, 268, 3036-3041.	0.2	30
92	Inhibition of the Wnt Signaling Pathway by Idax, a Novel Dvl-Binding Protein. Molecular and Cellular Biology, 2001, 21, 330-342.	1.1	114
93	Wnt Signaling Regulates Hemopoiesis Through Stromal Cells. Journal of Immunology, 2001, 167, 765-772.	0.4	81
94	Loss of mRor1 Enhances the Heart and Skeletal Abnormalities in mRor2 -Deficient Mice: Redundant and Pleiotropic Functions of mRor1 and mRor2 Receptor Tyrosine Kinases. Molecular and Cellular Biology, 2001, 21, 8329-8335.	1.1	122
95	Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes To Cells, 2000, 5, 71-78.	0.5	197
96	Complex Formation of Adenomatous Polyposis Coli Gene Product and Axin Facilitates Glycogen Synthase Kinase-3β-dependent Phosphorylation of β-Catenin and Down-regulates β-Catenin. Journal of Biological Chemistry, 2000, 275, 34399-34406.	1.6	116
97	A Novel β-Catenin-binding Protein Inhibits β-Catenin-dependent Tcf Activation and Axis Formation. Journal of Biological Chemistry, 2000, 275, 32871-32878.	1.6	92
98	Posttranscriptional Regulation of $\hat{l}\pm$ -Catenin Expression Is Required for Wnt Signaling in L Cells. Biochemical and Biophysical Research Communications, 2000, 277, 691-698.	1.0	34
99	Induction of Melanocyte-specific Microphthalmia-associated Transcription Factor by Wnt-3a. Journal of Biological Chemistry, 2000, 275, 14013-14016.	1.6	289
100	Phosphorylation of Axin, a Wnt Signal Negative Regulator, by Glycogen Synthase Kinase-3β Regulates Its Stability. Journal of Biological Chemistry, 1999, 274, 10681-10684.	1.6	331
101	Axin prevents Wnt-3a-induced accumulation of β-catenin. Oncogene, 1999, 18, 979-985.	2.6	120
102	T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes and Development, 1999, 13, 3185-3190.	2.7	464
103	Cytoskeletal reorganization by soluble Wntâ€3a protein signalling. Genes To Cells, 1998, 3, 659-670.	0.5	240
104	Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes and Development, 1998, 12, 1438-1452.	2.7	732
105	The Expression of the MouseZic1, Zic2,andZic3Gene Suggests an Essential Role forZicGenes in Body Pattern Formation. Developmental Biology, 1997, 182, 299-313.	0.9	307
106	Evidence That Absence ofWnt-3aSignaling Promotes Neuralization Instead of Paraxial Mesoderm Development in the Mouse. Developmental Biology, 1997, 183, 234-242.	0.9	267
107	Wnt signalling required for expansion of neural crest and CNS progenitors. Nature, 1997, 389, 966-970.	13.7	655
108	Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development Genes and Development, 1996, 10, 313-324.	2.7	240

#	Article	IF	CITATIONS
109	Function of c‐mycon erythroid differentiation and heme synthesis. Stem Cells, 1994, 12, 55-63.	1.4	9
110	Wnt-3a regulates somite and tailbud formation in the mouse embryo Genes and Development, 1994, 8, 174-189.	2.7	725
111	Role of c-Myc on Erythroid Differentiation Tohoku Journal of Experimental Medicine, 1992, 168, 203-210.	0.5	0
112	c-Myc Interferes with the Commitment to Differentiation of Murine Erythroleukemia Cells at a Reversible Point. Japanese Journal of Cancer Research, 1992, 83, 61-65.	1.7	7
113	Overexpression of c-Myc Inhibits the Appearance of a Specific DNase I Hypersensitive Site in the β-Globin Chromatin in Murine Erythroleukemia Cells. Japanese Journal of Cancer Research, 1991, 82, 376-379.	1.7	4
114	Antisense RNA of the latent period gene (MER5) inhibits the differentiation of murine erythroleukemia cells. Gene, 1990, 91, 261-265.	1.0	41
115	Selective suppression of endogenous β-globin gene expression by transferred β-globin/TK chimeric gene in murine erythroleukemia cells. Cell Differentiation and Development, 1989, 27, 9-18.	0.4	0
116	A balance between self-renewal and commitment in the murine erythroleukemia cells with the transferred c-myc gene; an in vitro stochastic model. Cell Differentiation and Development, 1989, 28, 129-133.	0.4	6
117	Analysis of the expression of two phosphoglycerate kinase genes in a mouse cultured cell line during activation and inactivation of the c-myc gene Chemical and Pharmaceutical Bulletin, 1989, 37, 1103-1105.	0.6	1
118	Probability that the commitment of murine erythroleukemia cell differentiation is determined by the c-myc level. Journal of Molecular Biology, 1988, 202, 779-786.	2.0	57
119	Modulation of the Transferred Mouse 26K Casein Gene in Mouse L Cells by Glucocorticoid Hormone1. Journal of Biochemistry, 1987, 101, 103-110.	0.9	8
120	Characterization of trans-acting factor(s) regulating β-globin gene expression by in vivo competition. Cell Differentiation, 1987, 21, 111-118.	1.3	2