
Bart P H J Thomma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9156487/publications.pdf Version: 2024-02-01

RADT PHITHOMMA

#	Article	IF	CITATIONS
1	Local Rather than Global H3K27me3 Dynamics Are Associated with Differential Gene Expression in Verticillium dahliae. MBio, 2022, 13, e0356621.	4.1	14
2	Microbiota manipulation through the secretion of effector proteins is fundamental to the wealth of lifestyles in the fungal kingdom. FEMS Microbiology Reviews, 2022, 46, .	8.6	14
3	Comparative genomics reveals the <i>in plantaâ€</i> secreted <i>Verticillium dahliae</i> Av2 effector protein recognized in tomato plants that carry the <scp><i>V2</i></scp> resistance locus. Environmental Microbiology, 2021, 23, 1941-1958.	3.8	32
4	Three LysM effectors of <i>Zymoseptoria tritici</i> collectively disarm chitinâ€ŧriggered plant immunity. Molecular Plant Pathology, 2021, 22, 683-693.	4.2	31
5	A 20â€kb lineageâ€specific genomic region tames virulence in pathogenic amphidiploid Verticillium Iongisporum. Molecular Plant Pathology, 2021, 22, 939-953.	4.2	6
6	Three putative DNA methyltransferases of Verticillium dahliae differentially contribute to DNA methylation that is dispensable for growth, development and virulence. Epigenetics and Chromatin, 2021, 14, 21.	3.9	8
7	The Interspecific Fungal Hybrid <i>Verticillium longisporum</i> Displays Subgenome-Specific Gene Expression. MBio, 2021, 12, e0149621.	4.1	8
8	The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature, 2021, 598, 495-499.	27.8	223
9	Identification and characterization of <i>Cercospora beticola</i> necrosisâ€inducing effector CbNip1. Molecular Plant Pathology, 2021, 22, 301-316.	4.2	14
10	An ancient antimicrobial protein co-opted by a fungal plant pathogen for in planta mycobiome manipulation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	45
11	A lysin motif effector subverts chitinâ€ŧriggered immunity to facilitate arbuscular mycorrhizal symbiosis. New Phytologist, 2020, 225, 448-460.	7.3	87
12	Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nature Plants, 2020, 6, 1365-1374.	9.3	118
13	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. PLoS Pathogens, 2020, 16, e1008652.	4.7	44
14	A unique chromatin profile defines adaptive genomic regions in a fungal plant pathogen. ELife, 2020, 9,	6.0	37
15	MAMP-triggered Medium Alkalinization of Plant Cell Cultures. Bio-protocol, 2020, 10, e3588.	0.4	2
16	Dynamic virulenceâ€related regions of the plant pathogenic fungus <i>Verticillium dahliae</i> display enhanced sequence conservation. Molecular Ecology, 2019, 28, 3482-3495.	3.9	34
17	Chitin-Binding Protein of <i>Verticillium nonalfalfae</i> Disguises Fungus from Plant Chitinases and Suppresses Chitin-Triggered Host Immunity. Molecular Plant-Microbe Interactions, 2019, 32, 1378-1390.	2.6	72
18	<i>In silico</i> prediction and characterisation of secondary metabolite clusters in the plant pathogenic fungus <i>Verticillium dahliae</i> . FEMS Microbiology Letters, 2019, 366, .	1.8	14

#	Article	IF	CITATIONS
19	The Genome of the Fungal Pathogen <i>Verticillium dahliae</i> Reveals Extensive Bacterial to Fungal Gene Transfer. Genome Biology and Evolution, 2019, 11, 855-868.	2.5	18
20	Long-Read Annotation: Automated Eukaryotic Genome Annotation Based on Long-Read cDNA Sequencing. Plant Physiology, 2019, 179, 38-54.	4.8	45
21	Gene cluster conservation identifies melanin and perylenequinone biosynthesis pathways in multiple plant pathogenic fungi. Environmental Microbiology, 2019, 21, 913-927.	3.8	16
22	Plant pathogen effector proteins as manipulators of host microbiomes?. Molecular Plant Pathology, 2018, 19, 257-259.	4.2	84
23	Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance. Nature Genetics, 2018, 50, 375-380.	21.4	96
24	Genome Sequence of a Lethal Strain of Xylem-Invading <i>Verticillium nonalfalfae</i> . Genome Announcements, 2018, 6, .	0.8	13
25	Tools of the crook―infection strategies of fungal plant pathogens. Plant Journal, 2018, 93, 664-674.	5.7	83
26	Evolution within the fungal genus <i>Verticillium</i> is characterized by chromosomal rearrangement and gene loss. Environmental Microbiology, 2018, 20, 1362-1373.	3.8	70
27	Hostâ€induced gene silencing compromises Verticillium wilt in tomato and <i>Arabidopsis</i> . Molecular Plant Pathology, 2018, 19, 77-89.	4.2	93
28	Metabolomics of tomato xylem sap during bacterial wilt reveals <i>Ralstonia solanacearum</i> produces abundant putrescine, a metabolite that accelerates wilt disease. Environmental Microbiology, 2018, 20, 1330-1349.	3.8	114
29	Transfer of tomato immune receptor Ve1 confers Ave1â€dependent <i>Verticillium</i> resistance in tobacco and cotton. Plant Biotechnology Journal, 2018, 16, 638-648.	8.3	45
30	Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus <i>Colletotrichum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5459-E5466.	7.1	61
31	Targeting microbial pathogens. Science, 2018, 360, 1070-1071.	12.6	5
32	Rhamnose synthase activity is required for pathogenicity of the vascular wilt fungus <i>Verticillium dahliae</i> . Molecular Plant Pathology, 2017, 18, 347-362.	4.2	23
33	Broad taxonomic characterization of Verticillium wilt resistance genes reveals an ancient origin of the tomato Ve1 immune receptor. Molecular Plant Pathology, 2017, 18, 195-209.	4.2	58
34	Transfer and engineering of immune receptors to improve recognition capacities in crops. Current Opinion in Plant Biology, 2017, 38, 42-49.	7.1	57
35	<i>Verticillium dahliae</i> LysM effectors differentially contribute to virulence on plant hosts. Molecular Plant Pathology, 2017, 18, 596-608.	4.2	122
36	A distinct and genetically diverse lineage of the hybrid fungal pathogen <i>Verticillium longisporum</i> population causes stem striping in British oilseed rape. Environmental Microbiology, 2017, 19, 3997-4009.	3.8	23

#	Article	IF	CITATIONS
37	Transposable Elements Direct The Coevolution between Plants and Microbes. Trends in Genetics, 2017, 33, 842-851.	6.7	113
38	The Emerging British <i>Verticillium longisporum</i> Population Consists of Aggressive <i>Brassica</i> Pathogens. Phytopathology, 2017, 107, 1399-1405.	2.2	15
39	Reliable detection of unevenly distributed <i>Verticillium dahliae</i> in diseased olive trees. Plant Pathology, 2017, 66, 641-650.	2.4	13
40	Convergent evolution of filamentous microbes towards evasion of glycanâ€ŧriggered immunity. New Phytologist, 2016, 212, 896-901.	7.3	61
41	<i>Colletotrichum higginsianum</i> extracellular LysM proteins play dual roles in appressorial function and suppression of chitinâ€triggered plant immunity. New Phytologist, 2016, 211, 1323-1337.	7.3	155
42	<i>Verticillium longisporum</i> , the invisible threat to oilseed rape and other brassicaceous plant hosts. Molecular Plant Pathology, 2016, 17, 1004-1016.	4.2	93
43	Arabidopsis <scp>CLAVATA</scp> 1 and <scp>CLAVATA</scp> 2 receptors contribute toÂ <i>Ralstonia solanacearum</i> pathogenicity through a miR169â€dependent pathway. New Phytologist, 2016, 211, 502-515.	7.3	74
44	Soybean production in eastern and southern Africa and threat of yield loss due to soybean rust caused by <i>Phakopsora pachyrhizi</i> . Plant Pathology, 2016, 65, 176-188.	2.4	38
45	Editorial overview: The fungal infection arena in animal and plant hosts: dynamics at the interface. Current Opinion in Microbiology, 2016, 32, v-vii.	5.1	1
46	The Age of Effectors: Genome-Based Discovery and Applications. Phytopathology, 2016, 106, 1206-1212.	2.2	40
47	Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Research, 2016, 26, 1091-1100.	5.5	308
48	RNA-sequencing of Cercospora beticola DMI-sensitive and -resistant isolates after treatment with tetraconazole identifies common and contrasting pathway induction. Fungal Genetics and Biology, 2016, 92, 1-13.	2.1	30
49	Interspecific hybridization impacts host range and pathogenicity of filamentous microbes. Current Opinion in Microbiology, 2016, 32, 7-13.	5.1	103
50	Mind the gap; seven reasons to close fragmented genome assemblies. Fungal Genetics and Biology, 2016, 90, 24-30.	2.1	108
51	First Report of <i>Neonectria candida</i> Causing Postharvest Decay on â€~Conference' Pears in the Netherlands. Plant Disease, 2016, 100, 1787-1787.	1.4	5
52	Chromatin Biology Impacts Adaptive Evolution of Filamentous Plant Pathogens. PLoS Pathogens, 2016, 12, e1005920.	4.7	64
53	Worse Comes to Worst: Bananas and Panama Disease—When Plant and Pathogen Clones Meet. PLoS Pathogens, 2015, 11, e1005197.	4.7	167
54	Understanding Plant Immunity as a Surveillance System to Detect Invasion. Annual Review of Phytopathology, 2015, 53, 541-563.	7.8	440

4

#	Article	IF	CITATIONS
55	Draft Genome Sequence of a Strain of Cosmopolitan Fungus Trichoderma atroviride. Genome Announcements, 2015, 3, .	0.8	10
56	The battle for chitin recognition in plant-microbe interactions. FEMS Microbiology Reviews, 2015, 39, 171-183.	8.6	238
57	Genomics Spurs Rapid Advances in Our Understanding of the Biology of Vascular Wilt Pathogens in the Genus <i>Verticillium</i> . Annual Review of Phytopathology, 2015, 53, 181-198.	7.8	96
58	Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome. MBio, 2015, 6, .	4.1	141
59	The Genome of the Saprophytic Fungus <i>Verticillium tricorpus</i> Reveals a Complex Effector Repertoire Resembling That of Its Pathogenic Relatives. Molecular Plant-Microbe Interactions, 2015, 28, 362-373.	2.6	61
60	Functional Analysis of the Tomato Immune Receptor Ve1 through Domain Swaps with Its Non-Functional Homolog Ve2. PLoS ONE, 2014, 9, e88208.	2.5	46
61	<scp>PIRIN</scp> 2 stabilizes cysteine protease <scp>XCP</scp> 2 and increases susceptibility to the vascular pathogen <i>Ralstonia solanacearum</i> in Arabidopsis. Plant Journal, 2014, 79, 1009-1019.	5.7	41
62	Sex or no sex: Evolutionary adaptation occurs regardless. BioEssays, 2014, 36, 335-345.	2.5	123
63	Chaperones of the endoplasmic reticulum are required for Ve1 â€mediated resistance to V erticillium. Molecular Plant Pathology, 2014, 15, 109-117.	4.2	33
64	Get your high-quality low-cost genome sequence. Trends in Plant Science, 2014, 19, 288-291.	8.8	33
65	The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution. Fungal Genetics and Biology, 2014, 62, 43-54.	2.1	15
66	Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Current Opinion in Plant Biology, 2014, 20, 96-103.	7.1	242
67	The Brassicaceae-Specific EWR1 Gene Provides Resistance to Vascular Wilt Pathogens. PLoS ONE, 2014, 9, e88230.	2.5	32
68	Mutational Analysis of the Ve1 Immune Receptor That Mediates Verticillium Resistance in Tomato. PLoS ONE, 2014, 9, e99511.	2.5	33
69	Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10010-10015.	7.1	272
70	Ratio of mutated versus wildâ€ŧype coat protein sequences in <i><scp>P</scp>epino mosaic virus</i> determines the nature and severity of yellowing symptoms on tomato plants. Molecular Plant Pathology, 2013, 14, 923-933.	4.2	32
71	Optimized Agroinfiltration and Virus-Induced Gene Silencing to Study Ve1-Mediated <i>Verticillium</i> Resistance in Tobacco. Molecular Plant-Microbe Interactions, 2013, 26, 182-190.	2.6	50
72	Evidence for Functional Diversification Within a Fungal NEP1-Like Protein Family. Molecular Plant-Microbe Interactions, 2013, 26, 278-286.	2.6	192

#	Article	IF	CITATIONS
73	Structureâ€function Aspects of Extracellular Leucineâ€rich Repeatâ€containing Cell Surface Receptors in Plants. Journal of Integrative Plant Biology, 2013, 55, 1212-1223.	8.5	36
74	Arabidopsis <i>wat1</i> (<i>walls are thin1</i>)â€mediated resistance to the bacterial vascular pathogen, <i>Ralstonia solanacearum</i> , is accompanied by crossâ€regulation of salicylic acid and tryptophan metabolism. Plant Journal, 2013, 73, 225-239.	5.7	154
75	<i>Verticillium dahliae</i> Sge1 Differentially Regulates Expression of Candidate Effector Genes. Molecular Plant-Microbe Interactions, 2013, 26, 249-256.	2.6	86
76	The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in Plant Science, 2013, 4, 97.	3.6	438
77	Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Research, 2013, 23, 1271-1282.	5.5	338
78	LysM Effectors: Secreted Proteins Supporting Fungal Life. PLoS Pathogens, 2013, 9, e1003769.	4.7	166
79	<i><scp>V</scp>e1</i> â€mediated resistance against <i><scp>V</scp>erticillium</i> does not involve a hypersensitive response in <scp>A</scp> rabidopsis. Molecular Plant Pathology, 2013, 14, 719-727.	4.2	44
80	Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. ELife, 2013, 2, e00790.	6.0	217
81	The transcriptome ofVerticillium dahliae-infectedNicotiana benthamianadetermined by deep RNA sequencing. Plant Signaling and Behavior, 2012, 7, 1065-1069.	2.4	42
82	Endoplasmic Reticulum-Quality Control Chaperones Facilitate the Biogenesis of Cf Receptor-Like Proteins Involved in Pathogen Resistance of Tomato Â. Plant Physiology, 2012, 159, 1819-1833.	4.8	63
83	Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5110-5115.	7.1	491
84	Effector-Mediated Suppression of Chitin-Triggered Immunity by <i>Magnaporthe oryzae</i> Is Necessary for Rice Blast Disease Â. Plant Cell, 2012, 24, 322-335.	6.6	493
85	Differential Tomato Transcriptomic Responses Induced by Pepino Mosaic Virus Isolates with Differential Aggressiveness. Plant Physiology, 2011, 156, 301-318.	4.8	76
86	Of PAMPs and Effectors: The Blurred PTI-ETI Dichotomy. Plant Cell, 2011, 23, 4-15.	6.6	896
87	The role of chitin detection in plant–pathogen interactions. Microbes and Infection, 2011, 13, 1168-1176.	1.9	90
88	Redefining plant systems biology: from cell to ecosystem. Trends in Plant Science, 2011, 16, 183-190.	8.8	70
89	The <i>Arabidopsis thaliana</i> DNA-Binding Protein AHL19 Mediates Verticillium Wilt Resistance. Molecular Plant-Microbe Interactions, 2011, 24, 1582-1591.	2.6	36
90	Affinity of Avr2 for tomato cysteine protease Rcr3 correlates with the Avr2â€ŧriggered Cfâ€2â€mediated hypersensitive response. Molecular Plant Pathology, 2011, 12, 21-30.	4.2	23

#	Article	IF	CITATIONS
91	How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Current Opinion in Plant Biology, 2011, 14, 400-406.	7.1	211
92	Interfamily Transfer of Tomato <i>Ve1</i> Mediates <i>Verticillium</i> Resistance in Arabidopsis Â. Plant Physiology, 2011, 156, 2255-2265.	4.8	250
93	Analysis of Two in Planta Expressed LysM Effector Homologs from the Fungus <i>Mycosphaerella graminicola</i> Reveals Novel Functional Properties and Varying Contributions to Virulence on Wheat Â. Plant Physiology, 2011, 156, 756-769.	4.8	333
94	Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens. PLoS Pathogens, 2011, 7, e1002137.	4.7	477
95	Tobacco blue mould disease caused by <i>Peronospora hyoscyami</i> f. sp. <i>tabacina</i> . Molecular Plant Pathology, 2010, 11, 13-18.	4.2	7
96	<i>Pepino mosaic virus</i> : a successful pathogen that rapidly evolved from emerging to endemic in tomato crops. Molecular Plant Pathology, 2010, 11, 179-189.	4.2	121
97	Crossâ€protection or enhanced symptom display in greenhouse tomato coâ€infected with different <i>Pepino mosaic virus</i> isolates. Plant Pathology, 2010, 59, 13-21.	2.4	36
98	Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant Journal, 2010, 62, 224-239.	5.7	127
99	Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology, 2010, 28, 365-369.	17.5	464
100	<i>NmDefO2</i> , a novel antimicrobial gene isolated from <i>Nicotiana megalosiphon</i> confers highâ€level pathogen resistance under greenhouse and field conditions. Plant Biotechnology Journal, 2010, 8, 678-690.	8.3	80
101	Conserved Fungal LysM Effector Ecp6 Prevents Chitin-Triggered Immunity in Plants. Science, 2010, 329, 953-955.	12.6	696
102	Emerging Viral Diseases of Tomato Crops. Molecular Plant-Microbe Interactions, 2010, 23, 539-548.	2.6	264
103	Functional Analyses of the CLAVATA2-Like Proteins and Their Domains That Contribute to CLAVATA2 Specificity. Plant Physiology, 2009, 152, 320-331.	4.8	36
104	RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. Journal of Experimental Botany, 2009, 60, 591-602.	4.8	189
105	Evolutionary relationships between Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici isolates inferred from mating type, elongation factor-11± and exopolygalacturonase sequences. Mycological Research, 2009, 113, 1181-1191.	2.5	38
106	<i>Pepino mosaic virus</i> isolates and differential symptomatology in tomato. Plant Pathology, 2009, 58, 450-460.	2.4	57
107	Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO Journal, 2009, 28, 3428-3438.	7.8	267
108	Genetic Dissection of <i>Verticillium</i> Wilt Resistance Mediated by Tomato Ve1 Â Â Â. Plant Physiology, 2009, 150, 320-332.	4.8	448

#	Article	IF	CITATIONS
109	Fungal LysM effectors: extinguishers of host immunity?. Trends in Microbiology, 2009, 17, 151-157.	7.7	243
110	Tomato Transcriptional Responses to a Foliar and a Vascular Fungal Pathogen Are Distinct. Molecular Plant-Microbe Interactions, 2009, 22, 245-258.	2.6	61
111	The novel <i>Cladosporium fulvum</i> lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Molecular Microbiology, 2008, 69, 119-136.	2.5	275
112	Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiology, 2008, 25, 745-761.	4.2	174
113	Challenges in plant cellular pathway reconstruction based on gene expression profiling. Trends in Plant Science, 2008, 13, 44-50.	8.8	20
114	The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi. Physiological and Molecular Plant Pathology, 2008, 72, 104-110.	2.5	64
115	Gene silencing to investigate the roles of receptor-like proteins in Arabidopsis. Plant Signaling and Behavior, 2008, 3, 893-896.	2.4	13
116	A Genome-Wide Functional Investigation into the Roles of Receptor-Like Proteins in Arabidopsis Â. Plant Physiology, 2008, 147, 503-517.	4.8	266
117	The <i>Cladosporium fulvum</i> Virulence Protein Avr2 Inhibits Host Proteases Required for Basal Defense Â. Plant Cell, 2008, 20, 1948-1963.	6.6	230
118	SodERF3, a Novel Sugarcane Ethylene Responsive Factor (ERF), Enhances Salt and Drought Tolerance when Overexpressed in Tobacco Plants. Plant and Cell Physiology, 2008, 49, 512-525.	3.1	134
119	The Chitin-Binding <i>Cladosporium fulvum</i> Effector Protein Avr4 Is a Virulence Factor. Molecular Plant-Microbe Interactions, 2007, 20, 1092-1101.	2.6	223
120	Assessing populations of a disease suppressive microorganism and a plant pathogen using DNA arrays. Plant Science, 2007, 172, 505-514.	3.6	4
121	A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f. sp. cucumerinum and f. sp. radicis-cucumerinum. Environmental Microbiology, 2007, 9, 2145-2161.	3.8	98
122	Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps?. FEMS Microbiology Reviews, 2007, 31, 239-277.	8.6	149
123	The BRI1-Associated Kinase 1, BAK1, Has a Brassinolide-Independent Role in Plant Cell-Death Control. Current Biology, 2007, 17, 1116-1122.	3.9	356
124	Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects. Drug Discovery Today, 2007, 12, 167-173.	6.4	20
125	Therapeutic potential of antifungal plant and insect defensins. Drug Discovery Today, 2007, 12, 966-971.	6.4	170
126	Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Science, 2006, 171, 155-165.	3.6	183

#	Article	IF	CITATIONS
127	The Arabidopsis defense response mutant esa1 as a model to discover novel resistance traits against Fusarium diseases. Plant Science, 2006, 171, 585-595.	3.6	27
128	EIL2 Transcription Factor and Glutathione Synthetase Are Required for Defense of Tobacco Against Tobacco Blue Mold. Molecular Plant-Microbe Interactions, 2006, 19, 399-406.	2.6	17
129	Detecting single nucleotide polymorphisms using DNA arrays for plant pathogen diagnosis. FEMS Microbiology Letters, 2006, 255, 129-139.	1.8	50
130	Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 2006, 7, 1-16.	4.2	906
131	Nitrogen controls in planta expression of Cladosporium fulvum Avr9 but no other effector genes. Molecular Plant Pathology, 2006, 7, 125-130.	4.2	48
132	Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 2006, 7, 71-86.	4.2	758
133	PLANT-MEDIATED INTERACTIONS BETWEEN PATHOGENIC MICROORGANISMS AND HERBIVOROUS ARTHROPODS. Annual Review of Entomology, 2006, 51, 663-689.	11.8	412
134	Affinity-tags are removed from Cladosporium fulvum effector proteins expressed in the tomato leaf apoplast. Journal of Experimental Botany, 2006, 57, 599-608.	4.8	30
135	Identification of sugarcane genes induced in disease-resistant somaclones upon inoculation with Ustilago scitaminea or Bipolaris sacchari. Plant Physiology and Biochemistry, 2005, 43, 1115-1121.	5.8	53
136	Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray. Environmental Microbiology, 2005, 7, 1698-1710.	3.8	125
137	Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Molecular Plant Pathology, 2005, 6, 379-393.	4.2	217
138	Recent Developments in Pathogen Detection Arrays: Implications for Fungal Plant Pathogens and Use in Practice. Phytopathology, 2005, 95, 1374-1380.	2.2	127
139	Phenotypical and molecular characterization of the Tomato mottle Taino virus–Nicotiana megalosiphon interaction. Physiological and Molecular Plant Pathology, 2005, 67, 231-236.	2.5	9
140	Defensins from Insects and Plants Interact with Fungal Glucosylceramides. Journal of Biological Chemistry, 2004, 279, 3900-3905.	3.4	320
141	The jasmonate-insensitive mutant jin1 shows increased resistance to biotrophic as well as necrotrophic pathogens. Molecular Plant Pathology, 2004, 5, 425-434.	4.2	95
142	Characterisation of anArabidopsis-Leptosphaeria maculanspathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant Journal, 2004, 37, 9-20.	5.7	100
143	Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogens. FEMS Microbiology Letters, 2003, 223, 113-122.	1.8	131
144	Quantification of disease progression of several microbial pathogens onArabidopsis thalianausing real-time fluorescence PCR. FEMS Microbiology Letters, 2003, 228, 241-248.	1.8	128

#	Article	IF	CITATIONS
145	Alternaria spp.: from general saprophyte to specific parasite. Molecular Plant Pathology, 2003, 4, 225-236.	4.2	600
146	The Arabidopsis mutant iop1 exhibits induced over-expression of the plant defensin gene PDF1.2 and enhanced pathogen resistance. Molecular Plant Pathology, 2003, 4, 479-486.	4.2	22
147	Plant defensins. Planta, 2002, 216, 193-202.	3.2	616
148	Esa1 , an Arabidopsis mutant with enhanced susceptibility to a range of necrotrophic fungal pathogens, shows a distorted induction of defense responses by reactive oxygen generating compounds. Plant Journal, 2002, 29, 131-140.	5.7	89
149	Different micro-organisms differentially induce Arabidopsis disease response pathways. Plant Physiology and Biochemistry, 2001, 39, 673-680.	5.8	92
150	The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology, 2001, 13, 63-68.	5.5	616
151	Study of the Role of Antimicrobial Glucosinolate-Derived Isothiocyanates in Resistance of Arabidopsis to Microbial Pathogens. Plant Physiology, 2001, 125, 1688-1699.	4.8	311
152	Disease development of several fungi on Arabidopsis can be reduced by treatment with methyl jasmonate. Plant Physiology and Biochemistry, 2000, 38, 421-427.	5.8	121
153	Requirement of Functional Ethylene-Insensitive 2Gene for Efficient Resistance of Arabidopsis to Infection by Botrytis cinerea. Plant Physiology, 1999, 121, 1093-1101.	4.8	464
154	Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant Journal, 1999, 19, 163-171.	5.7	404
155	Disturbed correlation between fungal biomass and β-glucuronidase activity in infections of Arabidopsis thaliana with transgenic Alternaria brassicicola. Plant Science, 1999, 148, 31-36.	3.6	14
156	Tissue-specific expression of plant defensin genes PDF2.1 and PDF2.2 in Arabidopsis thaliana. Plant Physiology and Biochemistry, 1998, 36, 533-537.	5.8	51
157	Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15107-15111.	7.1	1,367