
Alper Calam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9156386/publications.pdf Version: 2024-02-01

ALDED CALAM

#	Article	IF	CITATIONS
1	Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy, 2019, 168, 1208-1216.	8.8	107
2	The comparison of combustion, engine performance and emission characteristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI engine. Fuel, 2020, 266, 117071.	6.4	95
3	A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: Applications, challenges, and global potential. Fuel, 2020, 279, 118516.	6.4	66
4	Experimental investigation on the combustion, performance and exhaust emission characteristics of poppy oil biodiesel-diesel dual fuel combustion in a CI engine. Fuel, 2020, 280, 118588.	6.4	64
5	A Comparison of Engine Performance and the Emission of Fusel Oil and Gasoline Mixtures at Different Ignition Timings. International Journal of Green Energy, 2015, 12, 767-772.	3.8	56
6	Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method. Energy, 2021, 227, 120518.	8.8	48
7	Investigation of usability of the fusel oil in a single cylinder spark ignition engine. Journal of the Energy Institute, 2015, 88, 258-265.	5.3	46
8	The effects of diisopropyl ether on combustion, performance, emissions and operating range in a HCCI engine. Fuel, 2020, 265, 116919.	6.4	42
9	Operating range, combustion, performance and emissions of an HCCI engine fueled with naphtha. Fuel, 2021, 283, 118828.	6.4	41
10	Effects of the fusel oil usage in HCCI engine on combustion, performance and emission. Fuel, 2020, 262, 116503.	6.4	39
11	Multi objective optimization of HCCI combustion fuelled with fusel oil and n-heptane blends. Renewable Energy, 2022, 182, 827-841.	8.9	39
12	Optimization of the operating conditions of a beta-type rhombic drive stirling engine by using response surface method. Energy, 2020, 198, 117377.	8.8	38
13	Study on the combustion characteristics of acetone/n-heptane blend and RON50 reference fuels in an HCCI engine at different compression ratios. Fuel, 2020, 271, 117646.	6.4	38
14	Mapping of an HCCI engine using negative valve overlap strategy. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, 42, 1140-1154.	2.3	34
15	Modelling of performance, emission, and combustion of an HCCI engine fueled with fusel oil-diethylether fuel blends as a renewable fuel. Fuel, 2021, 290, 120017.	6.4	30
16	Effects of n-heptane/toluene/ethanol ternary fuel blends on combustion, operating range and emissions in premixed low temperature combustion. Fuel, 2021, 295, 120628.	6.4	26
17	Effect of nitrogen and hydrogen addition on performance and emissions in reactivity controlled compression ignition. Fuel, 2021, 292, 120330.	6.4	23
18	A comparative analysis of the engine performance and exhaust emissions characteristics of a diesel engine fueled with Mono ethylene glycol supported emulsion. Fuel, 2021, 288, 119723.	6.4	17

ALPER CALAM

#	Article	IF	CITATIONS
19	An Experimental Research on the Effects of Negative Valve Overlap on Performance and Operating Range in a Homogeneous Charge Compression Ignition Engine With RON40 and RON60 Fuels. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	1.1	15
20	Industry 4.0: Challenges of Mechanical Engineering for Society and Industry. Mechanical Engineering for Society and Industry, 2021, 1, 3-6.	2.0	12
21	Exergy analysis in a HCCI engine operated with diethyl ether-fusel oil blends. Case Studies in Thermal Engineering, 2022, 32, 101899.	5.7	12
22	Combustion characteristics of naphtha and n-heptane fuels in an auto-ignited HCCI engine at different lambda values and engine loads. Fuel, 2022, 327, 125183.	6.4	11
23	Investigation of the effect of JP-8 fuel and biodiesel fuel mixture on engine performance and emissions by experimental and statistical methods. Energy, 2022, 254, 124155.	8.8	10
24	Combustion, performance and emission caracteristics of a HCCI engine fuelled with n-butanol/n-heptane blends. International Journal of Automotive Engineering and Technologies, 2020, 9, 1-10.	0.5	7
25	Hava Fazlalık Katsayısı ve Oktan Sayısı Değişiminin HCCI Yanma Karakteristiklerine ve Motor Perforn Etkileri. Journal of Polytechnic, 0, , .	nansına 0.7	6
26	İzopropanol ve Heptan Karışım Yakıtları Kullanımının Bir HCCI Motorda Performans Yanma ve Er Karakteristiklerinin Deneysel İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi, 2019, 7, 818-833.	nisyon 0.6	5
27	An Experimental Investigation on The Effects of Waste Olive Oil Biodiesel on Combustion, Engine Performance and Exhaust Emissions. International Journal of Automotive Engineering and Technologies, 2019, 8, 103-116.	0.5	4
28	Homojen Dolgulu Sıkıştırma ile AteÅŸlemeli Bir Motorda N-Heptan-Tetrahidrofuran Karışımlarınıı Performans Ve Emisyonlara Etkisi. Journal of Polytechnic, 2021, 24, 1033-1043.	n Yanma, 0.7	4
29	Aseton, Tetrahidrofuran ve N-heptan Yakıt Karışımlarının Homojen Dolgulu Sıkıştırma İle Ate Yanmaya (HCCI) ve Motor Performansına Etkileri Üzerine Deneysel Bir ÁraÅŸtırma. Gazi Üniversitesi Fen Bilimleri Dergisi, 2019, 7, 700-711.	AŸlemeli 0.6	2