Søren Balling Engelsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9156005/publications.pdf

Version: 2024-02-01

282 papers

15,473 citations

18465 62 h-index 24232 110 g-index

290 all docs

290 docs citations

times ranked

290

15435 citing authors

#	Article	IF	CITATIONS
1	Review of the most common pre-processing techniques for near-infrared spectra. TrAC - Trends in Analytical Chemistry, 2009, 28, 1201-1222.	5.8	1,894
2	Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy. Applied Spectroscopy, 2000, 54, 413-419.	1.2	1,182
3	icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. Journal of Magnetic Resonance, 2010, 202, 190-202.	1.2	696
4	Light Scattering and Light Absorbance Separated by Extended Multiplicative Signal Correction. Application to Near-Infrared Transmission Analysis of Powder Mixtures. Analytical Chemistry, 2003, 75, 394-404.	3.2	436
5	Multivariate Autofluorescence of Intact Food Systems. Chemical Reviews, 2006, 106, 1979-1994.	23.0	262
6	Vibrational microspectroscopy of food. Raman vs. FT-IR. Trends in Food Science and Technology, 2003, 14, 50-57.	7.8	222
7	Starch phosphorylation: a new front line in starch research. Trends in Plant Science, 2002, 7, 445-450.	4.3	206
8	icoshift: An effective tool for the alignment of chromatographic data. Journal of Chromatography A, 2011, 1218, 7832-7840.	1.8	203
9	Prediction of water-holding capacity and composition of porcine meat by comparative spectroscopy. Meat Science, 2000, 55, 177-185.	2.7	190
10	Chemometric Quantitation of the Active Substance (Containing C≡N) in a Pharmaceutical Tablet Using Near-Infrared (NIR) Transmittance and NIR FT-Raman Spectra. Applied Spectroscopy, 2002, 56, 579-585.	1.2	182
11	A comparison and chemometric analysis of several molecular mechanics force fields and parameter sets applied to carbohydrates. Carbohydrate Research, 1998, 314, 141-155.	1.1	150
12	Chemometrics in food science—a demonstration of the feasibility of a highly exploratory, inductive evaluation strategy of fundamental scientific significance. Chemometrics and Intelligent Laboratory Systems, 1998, 44, 31-60.	1.8	148
13	Investigations of La Rioja Terroir for Wine Production Using ¹ H NMR Metabolomics. Journal of Agricultural and Food Chemistry, 2012, 60, 3452-3461.	2.4	121
14	Near-Infrared Absorption and Scattering Separated by Extended Inverted Signal Correction (EISC): Analysis of Near-Infrared Transmittance Spectra of Single Wheat Seeds. Applied Spectroscopy, 2002, 56, 1206-1214.	1.2	114
15	Molecular relaxation of sucrose in aqueous solutions: how a nanosecond molecular dynamics simulation helps to reconcile NMR data. The Journal of Physical Chemistry, 1995, 99, 13334-13351.	2.9	112
16	An exploratory chemometric study of 1H NMR spectra of table wines. Journal of Chemometrics, 2006, 20, 198-208.	0.7	112
17	Zeta potential of pectin-stabilised casein aggregates in acidified milk drinks. International Dairy Journal, 2007, 17, 302-307.	1.5	111
18	Identification and quantification of turkey meat adulteration in fresh, frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics. Meat Science, 2016, 121, 175-181.	2.7	109

#	Article	IF	CITATIONS
19	Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food and Bioprocess Technology, 2018, 11, 818-835.	2.6	103
20	Early prediction of water-holding capacity in meat by multivariate vibrational spectroscopy. Meat Science, 2003, 65, 581-592.	2.7	101
21	NMR-baking and Multivariate Prediction of Instrumental Texture Parameters in Bread. Journal of Cereal Science, 2001, 33, 59-69.	1.8	99
22	Helix-breaking news: fighting crystalline starch energy deposits in the cell. Trends in Plant Science, 2010, 15, 236-240.	4.3	95
23	Application of chemometrics to low-field1H NMR relaxation data of intact fish flesh. Journal of the Science of Food and Agriculture, 1999, 79, 1793-1802.	1.7	93
24	The diluted aqueous solvation of carbohydrates as inferred from molecular dynamics simulations and NMR spectroscopy. Biophysical Chemistry, 2001, 93, 103-127.	1.5	93
25	NMR-cooking: monitoring the changes in meat during cooking by low-field 1H-NMR. Trends in Food Science and Technology, 2002, 13, 341-346.	7.8	93
26	Effect of freezing temperature, thawing and cooking rate on water distribution in two pork qualities. Meat Science, 2006, 72, 34-42.	2.7	93
27	High-throughput cereal metabolomics: Current analytical technologies, challenges and perspectives. Journal of Cereal Science, 2014, 59, 393-418.	1.8	93
28	First Principles Insight into the α-Glucan Structures of Starch: Their Synthesis, Conformation, and Hydration. Chemical Reviews, 2010, 110, 2049-2080.	23.0	92
29	Exploring the phenotypic expression of a regulatory proteome-altering gene by spectroscopy and chemometrics. Analytica Chimica Acta, 2001, 446, 169-184.	2.6	90
30	Process Analytical Technology in the food industry. Trends in Food Science and Technology, 2013, 31, 27-35.	7.8	90
31	Cocoa Bean Shellâ€"A By-Product with Nutritional Properties and Biofunctional Potential. Nutrients, 2020, 12, 1123.	1.7	90
32	Quantitative analysis of NMR spectra with chemometrics. Journal of Magnetic Resonance, 2008, 190, 26-32.	1.2	87
33	Water properties during cooking of pork studied by low-field NMR relaxation: effects of curing and the RNâ [^] -gene. Meat Science, 2004, 66, 437-446.	2.7	86
34	A modification of canonical variates analysis to handle highly collinear multivariate data. Journal of Chemometrics, 2006, 20, 425-435.	0.7	85
35	Chemometric prediction of alginate monomer composition: A comparative spectroscopic study using IR, Raman, NIR and NMR. Carbohydrate Polymers, 2008, 72, 730-739.	5.1	85
36	Multivariate near-infrared and Raman spectroscopic quantifications of the crystallinity of lactose in whey permeate powder. International Dairy Journal, 2005, 15, 1261-1270.	1.5	83

#	Article	IF	CITATIONS
37	Comparative vibrational spectroscopy for determination of quality parameters in amidated pectins as evaluated by chemometrics. Carbohydrate Polymers, 1996, 30, 9-24.	5.1	82
38	A primer to nutritional metabolomics by NMR spectroscopy and chemometrics. Food Research International, 2013, 54, 1131-1145.	2.9	82
39	Physico-chemical Characterization of Floridean Starch of Red Algae. Starch/Staerke, 2002, 54, 66-74.	1.1	81
40	Towards Rapid and Unique Curve Resolution of Low-Field NMR Relaxation Data: Trilinear SLICING versus Two-Dimensional Curve Fitting. Journal of Magnetic Resonance, 2002, 157, 141-155.	1.2	81
41	Starch molecular structure and phosphorylation investigated by a combined chromatographic and chemometric approach. Carbohydrate Polymers, 2000, 41, 163-174.	5.1	79
42	Prediction of technological quality (cooking loss and Napole Yield) of pork based on fresh meat characteristics. Meat Science, 2003, 65, 707-712.	2.7	79
43	A NMR metabolomics study of the ripening process of the Fiore Sardo cheese produced with autochthonous adjunct cultures. Food Chemistry, 2013, 141, 2137-2147.	4.2	79
44	Explorative spectrometric evaluations of frying oil deterioration. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 1495.	0.8	76
45	Warmed-over flavour in porcine meat â€" a combined spectroscopic, sensory and chemometric study. Meat Science, 2000, 54, 83-95.	2.7	75
46	Hurrah for the increasing longevity: feasible strategies to counteract ageâ€related loss of skeletal muscle mass. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 1-2.	1.3	75
47	Assessment of the Effect of High or Low Protein Diet on the Human Urine Metabolome as Measured by NMR. Nutrients, 2012, 4, 112-131.	1.7	74
48	Chemometrics in foodomics: Handling data structures from multiple analytical platforms. TrAC - Trends in Analytical Chemistry, 2014, 60, 71-79.	5.8	74
49	Pre-rigor conditions in beef under varying temperature- and pH-falls studied with rigometer, NMR and NIR. Food Chemistry, 2000, 69, 407-418.	4.2	73
50	Evaluation of Quality Changes in Walnut Kernels (Juglans regial) by Vis/NIR Spectroscopy. Journal of Agricultural and Food Chemistry, 2001, 49, 5790-5796.	2.4	73
51	Quantification of the degree of blockiness in pectins using 1H NMR spectroscopy and chemometrics. Food Hydrocolloids, 2007, 21, 256-266.	5.6	72
52	Quantification of individual fatty acids in bovine milk by infrared spectroscopy and chemometrics: Understanding predictions of highly collinear reference variables. Journal of Dairy Science, 2014, 97, 7940-7951.	1.4	71
53	Recursive weighted partial least squares (rPLS): an efficient variable selection method using PLS. Journal of Chemometrics, 2014, 28, 439-447.	0.7	71
54	Determination of Dry Matter Content in Potato Tubers by Low-Field Nuclear Magnetic Resonance (LF-NMR). Journal of Agricultural and Food Chemistry, 2010, 58, 10300-10304.	2.4	68

#	Article	IF	CITATIONS
55	Prediction of Sensory Texture of Cooked Potatoes using Uniaxial Compression, Near Infrared Spectroscopy and Low Field1H NMR Spectroscopy. LWT - Food Science and Technology, 2000, 33, 103-111.	2.5	67
56	Unique Similarity of the Asymmetric Trehalose Solid-State Hydration and the Diluted Aqueous-Solution Hydration. Journal of Physical Chemistry B, 2000, 104, 9301-9311.	1.2	67
57	Exploratory SAXS and HPAEC-PAD studies of starches from diverse plant genotypes. Carbohydrate Polymers, 2006, 64, 433-443.	5.1	67
58	Flaxseed dietary fibers suppress postprandial lipemia and appetite sensation in young men. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 136-143.	1.1	67
59	Comparative spectroscopic and rheological studies on crude and purified soluble barley and oat \hat{l}^2 -glucan preparations. Food Research International, 2010, 43, 2417-2424.	2.9	65
60	Modeling polysaccharides: Present status and challenges. Journal of Molecular Graphics, 1996, 14, 307-321.	1.7	64
61	Analysis of lipoproteins using 2D diffusion-edited NMR spectroscopy and multi-way chemometrics. Analytica Chimica Acta, 2005, 531, 209-216.	2.6	64
62	Gel texture and chain structure of amylomaltase-modified starches compared to gelatin. Food Hydrocolloids, 2008, 22, 1551-1566.	5.6	64
63	Standardization of factors that influence human urine metabolomics. Metabolomics, 2011, 7, 71-83.	1.4	64
64	A hydration study of ($1\hat{a}$ †'4) and ($1\hat{a}$ †'6) linked \hat{l} ±-glucans by comparative 10 ns molecular dynamics simulations and 500-MHz NMR. Journal of Computational Chemistry, 2004, 25, 573-586.	1.5	63
65	Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations. Carbohydrate Research, 2004, 339, 937-948.	1.1	61
66	Quantification of Lipoprotein Subclasses by Proton Nuclear Magnetic Resonance–Based Partial Least-Squares Regression Models. Clinical Chemistry, 2005, 51, 1457-1461.	1.5	61
67	An exploratory NMR nutri-metabonomic investigation reveals dimethyl sulfone as a dietary biomarker for onion intake. Analyst, The, 2009, 134, 2344.	1.7	61
68	Metabolic profiling and aquaculture differentiation of gilthead sea bream by 1H NMR metabonomics. Food Chemistry, 2010, 120, 907-914.	4.2	61
69	1H NMR-based metabonomics approach in a rat model of acute liver injury and regeneration induced by CCl4 administration. Toxicology, 2013, 303, 115-124.	2.0	61
70	New Nordic Diet versus Average Danish Diet: A Randomized Controlled Trial Revealed Healthy Long-Term Effects of the New Nordic Diet by GC–MS Blood Plasma Metabolomics. Journal of Proteome Research, 2016, 15, 1939-1954.	1.8	61
71	Metabolomics as a Powerful Tool for Molecular Quality Assessment of the Fish Sparus aurata. Nutrients, 2011, 3, 212-227.	1.7	60
72	Residue Specific Hydration of Primary Cell Wall Potato Pectin Identified by Solid-State ¹³ C Single-Pulse MAS and CP/MAS NMR Spectroscopy. Biomacromolecules, 2011, 12, 1844-1850.	2.6	59

#	Article	IF	CITATIONS
73	Trends in the application of chemometrics to foodomics studies. Acta Alimentaria, 2015, 44, 4-31.	0.3	59
74	Alginate monomer composition studied by solution- and solid-state NMR – A comparative chemometric study. Food Hydrocolloids, 2009, 23, 1579-1586.	5.6	56
7 5	The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum high-throughput gas chromatography–mass spectrometry based metabolomics. Analytical and Bioanalytical Chemistry, 2013, 405, 9193-9205.	1.9	56
76	A comprehensive and comparative GC–MS metabolomics study of non-volatiles in Tanzanian grown mango, pineapple, jackfruit, baobab and tamarind fruits. Food Chemistry, 2016, 213, 691-699.	4.2	56
77	WHEY - The waste-stream that became more valuable than the food product. Trends in Food Science and Technology, 2021, 118, 230-241.	7.8	56
78	Application of the NMR-MOUSE to food emulsions. Journal of Magnetic Resonance, 2003, 165, 49-58.	1.2	55
79	Depth profiling of porcine adipose tissue by Raman spectroscopy. Journal of Raman Spectroscopy, 2012, 43, 482-489.	1.2	55
80	Molecular structure of large-scale extracted \hat{l}^2 -glucan from barley and oat: Identification of a significantly changed block structure in a high \hat{l}^2 -glucan barley mutant. Food Chemistry, 2013, 136, 130-138.	4.2	55
81	Raman spectroscopic study of effect of the cooking temperature and time on meat proteins. Food Research International, 2014, 66, 123-131.	2.9	55
82	Comprehensive and Comparative Metabolomic Profiling of Wheat, Barley, Oat and Rye Using Gas Chromatography-Mass Spectrometry and Advanced Chemometrics. Foods, 2014, 3, 569-585.	1.9	54
83	Forecasting individual breast cancer risk using plasma metabolomics and biocontours. Metabolomics, 2015, 11, 1376-1380.	1.4	54
84	Direct quantification of M/G ratio from 13C CP-MAS NMR spectra of alginate powders by multivariate curve resolution. Carbohydrate Research, 2009, 344, 2014-2022.	1.1	53
85	Prediction of total fatty acid parameters and individual fatty acids in pork backfat using Raman spectroscopy and chemometrics: Understanding the cage of covariance between highly correlated fat parameters. Meat Science, 2016, 111, 18-26.	2.7	53
86	Signature Mapping (SigMa): An efficient approach for processing complex human urine 1H NMR metabolomics data. Analytica Chimica Acta, 2020, 1108, 142-151.	2.6	53
87	Quantification of lipoprotein profiles by nuclear magnetic resonance spectroscopy and multivariate data analysis. TrAC - Trends in Analytical Chemistry, 2017, 94, 210-219.	5.8	52
88	Assessment of volatile fingerprint by HS-SPME/GC-qMS and E-nose for the classification of cocoa bean shells using chemometrics. Food Research International, 2019, 123, 684-696.	2.9	52
89	Structure function relationships of transgenic starches with engineered phosphate substitution and starch branching. International Journal of Biological Macromolecules, 2005, 36, 159-168.	3.6	51
90	Water mobility in acidified milk drinks studied by low-field 1H NMR. International Dairy Journal, 2007, 17, 294-301.	1.5	51

#	Article	IF	Citations
91	Plant metabolomics: Resolution and quantification of elusive peaks in liquid chromatography–mass spectrometry profiles of complex plant extracts using multi-way decomposition methods. Journal of Chromatography A, 2012, 1266, 84-94.	1.8	51
92	LC–MS metabolomics top-down approach reveals new exposure and effect biomarkers of apple and apple-pectin intake. Metabolomics, 2012, 8, 64-73.	1.4	51
93	Lipid oxidation degree of pork meat during frozen storage investigated by near-infrared hyperspectral imaging: Effect of ice crystal growth and distribution. Journal of Food Engineering, 2019, 263, 311-319.	2.7	50
94	The hydration of sucrose. Carbohydrate Research, 1996, 292, 21-38.	1.1	50
95	Staling of white wheat bread crumb and effect of maltogenic α-amylases. Part 1: Spatial distribution and kinetic modeling of hardness and resilience. Food Chemistry, 2016, 208, 318-325.	4.2	49
96	Quinoa seed coats as an expanding and sustainable source of bioactive compounds: An investigation of genotypic diversity in saponin profiles. Industrial Crops and Products, 2017, 104, 156-163.	2.5	48
97	A molecular builder for carbohydrates: Application to polysaccharides and complex carbohydrates. , 1996, 39, 417.		47
98	Calcium carbonate crystallization in the α-chitin matrix of the shell of pink shrimp, Pandalus borealis, during frozen storage. Journal of Crystal Growth, 1997, 177, 125-134.	0.7	46
99	The Effects of Amylose and Starch Phosphate on Starch Gel Retrogradation Studied by Low-field 1H NMR Relaxometry. Starch/Staerke, 2003, 55, 241-249.	1.1	46
100	Prediction of the degradability and ash content of wheat straw from different cultivars using near infrared spectroscopy. Industrial Crops and Products, 2010, 31, 321-326.	2.5	46
101	Toward Reliable Lipoprotein Particle Predictions from NMR Spectra of Human Blood: An Interlaboratory Ring Test. Analytical Chemistry, 2017, 89, 8004-8012.	3.2	46
102	Metabolomics analysis of shucked mussels' freshness. Food Chemistry, 2016, 205, 58-65.	4.2	45
103	Prediction of Sensory Texture Quality of Boiled Potatoes From Low-field1H NMR of Raw Potatoes. The Role of Chemical Constituents. LWT - Food Science and Technology, 2001, 34, 469-477.	2.5	43
104	The hydration of sucrose. Carbohydrate Research, 1996, 292, 21-38.	1.1	42
105	Low-field 1H nuclear magnetic resonance and chemometrics combined for simultaneous determination of water, oil, and protein contents in oilseeds. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 1069-1077.	0.8	42
106	Cooking Effects on Water Distribution in Potatoes Using Nuclear Magnetic Resonance Relaxation. Journal of Agricultural and Food Chemistry, 2005, 53, 5976-5981.	2.4	42
107	Travelling on the potential energy surfaces of carbohydrates: Comparative application of an exhaustive systematic conformational search with an heuristic search. Carbohydrate Research, 1995, 276, 1-29.	1.1	41
108	Assessment of dietary exposure related to dietary GI and fibre intake in a nutritional metabolomic study of human urine. Genes and Nutrition, 2012, 7, 281-293.	1.2	41

#	Article	IF	CITATIONS
109	Real-time modeling of milk coagulation using in-line near infrared spectroscopy. Journal of Food Engineering, 2012, 108, 345-352.	2.7	41
110	Physical fitness in communityâ€dwelling older adults is linked to dietary intake, gut microbiota, and metabolomic signatures. Aging Cell, 2020, 19, e13105.	3.0	41
111	Screening for dioxin contamination in fish oil by PARAFAC and N-PLSR analysis of fluorescence landscapes. Journal of Chemometrics, 2002, 16, 451-460.	0.7	40
112	Presence and Dehydration of Ikaite, Calcium Carbonate Hexahydrate, in Frozen Shrimp Shell. Journal of Agricultural and Food Chemistry, 1999, 47, 911-917.	2.4	39
113	Hydration of the Amylopectin Branch Point. Evidence of Restricted Conformational Diversity of the \hat{l}_{\pm} -(1 \hat{a}_{\uparrow} '6) Linkage. Journal of the American Chemical Society, 2004, 126, 13144-13155.	6.6	39
114	The use of rapid spectroscopic screening methods to detect adulteration of food raw materials and ingredients. Current Opinion in Food Science, 2016, 10, 45-51.	4.1	39
115	PowerSlicing. Journal of Magnetic Resonance, 2003, 163, 192-197.	1.2	38
116	Starch phosphorylation—Maltosidic restrains upon 3′―and 6′â€phosphorylation investigated by chemical synthesis, molecular dynamics and NMR spectroscopy. Biopolymers, 2009, 91, 179-193.	1.2	38
117	Characterization of marama bean (Tylosema esculentum) by comparative spectroscopy: NMR, FT-Raman, FT-IR and NIR. Food Research International, 2011, 44, 373-384.	2.9	38
118	POLYS 2.0: An open source software package for building threeâ€dimensional structures of polysaccharides. Biopolymers, 2014, 101, 733-743.	1.2	38
119	Accurate determination of endpoint temperature of cooked meat after storage by Raman spectroscopy and chemometrics. Food Control, 2015, 52, 119-125.	2.8	38
120	The mean hydration of carbohydrates as studied by normalized two-dimensional radial pair distributions. Journal of Molecular Graphics and Modelling, 1999, 17, 101-105.	1.3	37
121	Exploratory multivariate spectroscopic study on human skin. Skin Research and Technology, 2003, 9, 137-146.	0.8	37
122	Towards on-line monitoring of the composition of commercial carrageenan powders. Carbohydrate Polymers, 2004, 57, 337-348.	5.1	37
123	Effect of Î ² -O-Glucosylation onL-Ser andL-Thr Diamides: A Bias toward α-Helical Conformations. Chemistry - A European Journal, 2006, 12, 7864-7871.	1.7	36
124	Counteracting Age-related Loss of Skeletal Muscle Mass: a clinical and ethnological trial on the role of protein supplementation and training load (CALM Intervention Study): study protocol for a randomized controlled trial. Trials, 2016, 17, 397.	0.7	36
125	Rapid Spectroscopic Analysis of Marzipanâ€"Comparative Instrumentation. Journal of Near Infrared Spectroscopy, 2004, 12, 63-75.	0.8	35
126	Internal motions of carbohydrates as probed by comparative molecular modeling and nuclear magnetic resonance of ethyl \hat{l}^2 -lactoside. Journal of Computational Chemistry, 1995, 16, 1096-1119.	1.5	34

#	Article	IF	Citations
127	Data Pre-processing., 2009,, 29-50.		34
128	A physiochemical theory on the applicability of soft mathematical modelsâ€"experimentally interpreted. Journal of Chemometrics, 2010, 24, 481-495.	0.7	34
129	An On-Line Near-Infrared (NIR) Transmission Method for Determining Depth Profiles of Fatty Acid Composition and Iodine Value in Porcine Adipose Fat Tissue. Applied Spectroscopy, 2012, 66, 218-226.	1.2	34
130	Biomarkers of Individual Foods, and Separation of Diets Using Untargeted LC–MSâ€based Plasma Metabolomics in a Randomized Controlled Trial. Molecular Nutrition and Food Research, 2019, 63, e1800215.	1.5	34
131	The effect of daily protein supplementation, with or without resistance training for 1 year, on muscle size, strength, and function in healthy older adults: A randomized controlled trial. American Journal of Clinical Nutrition, 2021, 113, 790-800.	2.2	33
132	Conformations of disaccharides by empirical force field calculations. Part V: Conformational maps of \hat{l}^2 -gentiobiose in an optimized consistent force field. International Journal of Biological Macromolecules, 1993, 15, 56-62.	3.6	32
133	Multiway chemometric analysis of the metabolic response to toxins monitored by NMR. Chemometrics and Intelligent Laboratory Systems, 2005, 76, 79-89.	1.8	32
134	Mathematical chromatography solves the cocktail party effect in mixtures using 2D spectra and PARAFAC. TrAC - Trends in Analytical Chemistry, 2010, 29, 281-284.	5 . 8	32
135	Exploring genomes for glycosyltransferases. Molecular BioSystems, 2010, 6, 1773.	2.9	32
136	Effect of Gel Firmness at Cutting Time, pH, and Temperature on Rennet Coagulation and Syneresis: An in situ ¹ H NMR Relaxation Study. Journal of Agricultural and Food Chemistry, 2010, 58, 513-519.	2.4	32
137	Extracted Oat and Barley \hat{l}^2 -Glucans Do Not Affect Cholesterol Metabolism in Young Healthy Adults. Journal of Nutrition, 2013, 143, 1579-1585.	1.3	32
138	Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy. Journal of Cereal Science, 2017, 75, 92-99.	1.8	32
139	Internal motions and hydration of sucrose in a diluted water solution. Journal of Molecular Graphics and Modelling, 1997, 15, 122-131.	1.3	31
140	Noninvasive Assay for Cyanogenic Constituents in Plants by Raman Spectroscopy: Content and Distribution of Amygdalin in Bitter Almond (Prunus Amygdalus). Applied Spectroscopy, 2002, 56, 1139-1146.	1.2	31
141	Starch Granule Hydrationâ€"A MAS NMR Investigation. Food Biophysics, 2008, 3, 25-32.	1.4	31
142	High throughput prediction of chylomicron triglycerides in human plasma by nuclear magnetic resonance and chemometrics. Nutrition and Metabolism, 2010, 7, 43.	1.3	31
143	Screening for Triterpenoid Saponins in Plants Using Hyphenated Analytical Platforms. Molecules, 2016, 21, 1614.	1.7	31
144	GC-MS Metabolite Profiling of Extreme Southern Pinot noir Wines: Effects of Vintage, Barrel Maturation, and Fermentation Dominate over Vineyard Site and Clone Selection. Journal of Agricultural and Food Chemistry, 2016, 64, 2342-2351.	2.4	31

#	Article	IF	Citations
145	Authentication of cocoa bean shells by near- and mid-infrared spectroscopy and inductively coupled plasma-optical emission spectroscopy. Food Chemistry, 2019, 292, 47-57.	4.2	31
146	Comparative NMR relaxometry of gels of amylomaltase-modified starch and gelatin. Food Hydrocolloids, 2009, 23, 2038-2048.	5.6	30
147	The phosphorylation site in double helical amylopectin as investigated by a combined approach using chemical synthesis, crystallography and molecular modeling. FEBS Letters, 2003, 541, 137-144.	1.3	29
148	Use of NIR spectroscopy and chemometrics for on-line process monitoring of ammonia in Low Methoxylated Amidated pectin production. Chemometrics and Intelligent Laboratory Systems, 2005, 76, 149-161.	1.8	28
149	A novel improved method for analysis of 2D diffusion–relaxation data—2D PARAFAC-Laplace decomposition. Journal of Magnetic Resonance, 2007, 188, 10-23.	1.2	28
150	Structure and hydration of the amylopectin trisaccharide building blocksâ€"Synthesis, NMR, and molecular dynamics. Biopolymers, 2008, 89, 1179-1193.	1.2	28
151	Cereal \hat{l}^2 -glucan immune modulating activity depends on the polymer fine structure. Food Research International, 2014, 62, 829-836.	2.9	28
152	Comparative Study of Small Linear and Branched \hat{l}_{\pm} -Glucans Using Size Exclusion Chromatography and Static and Dynamic Light Scattering#. Biomacromolecules, 2005, 6, 143-151.	2.6	27
153	Molecular Interactions between Barley and Oat \hat{l}^2 -Glucans and Phenolic Derivatives. Journal of Agricultural and Food Chemistry, 2009, 57, 2056-2064.	2.4	27
154	Raman Microscopy and X-ray Diffraction, a Combined Study of Fibrillin-rich Microfibrillar Elasticity. Journal of Biological Chemistry, 2003, 278, 41189-41197.	1.6	26
155	Raman Spectroscopic Analysis of Cyanogenic Glucosides in Plants: Development of a Flow Injection Surface-Enhanced Raman Scatter (FI-SERS) Method for Determination of Cyanide. Applied Spectroscopy, 2004, 58, 212-217.	1.2	26
156	Quantification of blockiness in pectinsâ€"A comparative study using vibrational spectroscopy and chemometrics. Carbohydrate Research, 2009, 344, 1833-1841.	1.1	26
157	SERS detection of the biomarker hydrogen cyanide from Pseudomonas aeruginosa cultures isolated from cystic fibrosis patients. Scientific Reports, 2017, 7, 45264.	1.6	26
158	\hat{l}^2 -Lactose in the View of a CFF-Optimized Force Field. Journal of Carbohydrate Chemistry, 1997, 16, 773-788.	0.4	25
159	NMR and interval PLS as reliable methods for determination of cholesterol in rodent lipoprotein fractions. Metabolomics, 2010, 6, 129-136.	1.4	25
160	From metabolome to phenotype: GC-MS metabolomics of developing mutant barley seeds reveals effects of growth, temperature and genotype. Scientific Reports, 2017, 7, 8195.	1.6	25
161	In Vitro Bioaccessibility and Functional Properties of Phenolic Compounds from Enriched Beverages Based on Cocoa Bean Shell. Foods, 2020, 9, 715.	1.9	25
162	A Dietary Mixture of Oxysterols Induces In Vitro Intestinal Inflammation through TLR2/4 Activation: The Protective Effect of Cocoa Bean Shells. Antioxidants, 2019, 8, 151.	2.2	24

#	Article	IF	Citations
163	The Consistent Force Field. 5. PEF95SAC: Optimized Potential Energy Function for Alcohols and Carbohydrates. Journal of Carbohydrate Chemistry, 1997, 16, 751-772.	0.4	23
164	Characterization of Alginates by Nuclear Magnetic Resonance (NMR) and Vibrational Spectroscopy (IR,) Tj ETQq(0.0 _{0.4} gBT	/Oygrlock 10
165	A comparative study of mango solar drying methods by visible and near-infrared spectroscopy coupled with ANOVA-simultaneous component analysis (ASCA). LWT - Food Science and Technology, 2019, 112, 108214.	2.5	23
166	An NMR Metabolomics Approach to Investigate Factors Affecting the Yoghurt Fermentation Process and Quality. Metabolites, 2020, 10, 293.	1.3	23
167	Combining fold recognition and exploratory data analysis for searching for glycosyltransferases in the genome of Mycobacterium tuberculosis. Biochimie, 2003, 85, 691-700.	1.3	22
168	Early post-mortem discrimination of water-holding capacity in pig longissimus muscle using new ultrasound method. LWT - Food Science and Technology, 2005, 38, 437-445.	2.5	22
169	A combined nuclear magnetic resonance and molecular dynamics study of the two structural motifs for mixed-linkage \hat{l}^2 -glucans: methyl \hat{l}^2 -cellobioside and methyl \hat{l}^2 -laminarabioside. Carbohydrate Research, 2010, 345, 474-486.	1.1	22
170	Real-time metabolomic analysis of lactic acid bacteria as monitored by in vitro NMR and chemometrics. Metabolomics, $2016,12,1.$	1.4	22
171	Human Faecal $\langle \sup 1 \langle \sup \rangle$ H NMR Metabolomics: Evaluation of Solvent and Sample Processing on Coverage and Reproducibility of Signature Metabolites. Analytical Chemistry, 2020, 92, 9546-9555.	3.2	22
172	Exploring abiotic stress on asynchronous protein metabolism in single kernels of wheat studied by NMR spectroscopy and chemometrics. Journal of Experimental Botany, 2008, 60, 291-300.	2.4	21
173	Cleaning up NMR spectra with reference deconvolution for improving multivariate analysis of complex mixture spectra. Journal of Chemometrics, 2014, 28, 656-662.	0.7	21
174	Development of an Optimized Protocol for NMR Metabolomics Studies of Human Colon Cancer Cell Lines and First Insight from Testing of the Protocol Using DNA G-Quadruplex Ligands as Novel Anti-Cancer Drugs. Metabolites, 2016, 6, 4.	1.3	21
175	Antibiotic Treatment Preventing Necrotising Enterocolitis Alters Urinary and Plasma Metabolomes in Preterm Pigs. Journal of Proteome Research, 2017, 16, 3547-3557.	1.8	21
176	Characterisation of the arabinose-rich carbohydrate composition of immature and mature marama beans (Tylosema esculentum). Phytochemistry, 2011, 72, 1466-1472.	1.4	20
177	Lepidopteran defence droplets - a composite physical and chemical weapon against potential predators. Scientific Reports, 2016, 6, 22407.	1.6	20
178	Gum Arabic authentication and mixture quantification by near infrared spectroscopy. Food Control, 2017, 78, 144-149.	2.8	20
179	Staling of white wheat bread crumb and effect of maltogenic \hat{l} ±-amylases. Part 3: Spatial evolution of bread staling with time by near infrared hyperspectral imaging. Food Chemistry, 2021, 353, 129478.	4.2	20
180	Prediction of inÂvitro metabolic stability of calcitriol analogs by QSAR. Journal of Computer-Aided Molecular Design, 2003, 17, 849-859.	1.3	19

#	Article	IF	CITATIONS
181	Vibrational overtone combination spectroscopy (VOCSY)—a new way of using IR and NIR data. Analytical and Bioanalytical Chemistry, 2007, 388, 179-188.	1.9	19
182	Accumulation of mixed linkage ($1\hat{a}$ †'3) ($1\hat{a}$ †'4)- \hat{l}^2 -d-glucan during grain filling in barley: A vibrational spectroscopy study. Journal of Cereal Science, 2009, 49, 24-31.	1.8	19
183	Enzyme modification of starch with amylomaltase results in increasing gel melting point. Carbohydrate Polymers, 2009, 78, 72-79.	5.1	19
184	Resveratrol in the foodomics era: 1:25,000. Annals of the New York Academy of Sciences, 2017, 1403, 48-58.	1.8	19
185	The Consistent Force Field. 2. An Optimized Set of Potential Energy Functions for the Alkanes Acta Chemica Scandinavica, 1994, 48, 553-565.	0.7	19
186	The Consistent Force Field. 1. Methods and Strategies for Optimization of Empirical Potential Energy Functions Acta Chemica Scandinavica, 1994, 48, 548-552.	0.7	18
187	Oxidative changes in pork scratchings, peanuts, oatmeal and muesli viewed by fluorescence, near-infrared and infrared spectroscopy. European Food Research and Technology, 2004, 219, 294.	1.6	17
188	Quantifying crystalline \hat{l} ±-lactose monohydrate in amorphous lactose using terahertz time domain spectroscopy and near infrared spectroscopy. Vibrational Spectroscopy, 2019, 102, 39-46.	1.2	17
189	Cage of covariance in calibration modeling: Regressing multiple and strongly correlated response variables onto a low rank subspace of explanatory variables. Chemometrics and Intelligent Laboratory Systems, 2021, 213, 104311.	1.8	17
190	Water mobility in the endosperm of high beta-glucan barley mutants as studied by nuclear magnetic resonance imaging. Magnetic Resonance Imaging, 2007, 25, 425-432.	1.0	16
191	Differentiation of perirenal and omental fat quality of suckling lambs according to the rearing system from Fourier transforms mid-infrared spectra using partial least squares and artificial neural networks analysis. Meat Science, 2009, 83, 140-147.	2.7	16
192	Lipid composition and deposition during grain filling in intact barley (Hordeum vulgare) mutant grains as studied by 1H HR MAS NMR. Journal of Cereal Science, 2011, 54, 442-449.	1.8	16
193	Staling of white wheat bread crumb and effect of maltogenic î±-amylases. Part 2: Monitoring the staling process by using near infrared spectroscopy and chemometrics. Food Chemistry, 2019, 297, 124946.	4.2	16
194	Influence of Age, Sex, and Diet on the Human Fecal Metabolome Investigated by ¹ H NMR Spectroscopy. Journal of Proteome Research, 2021, 20, 3642-3653.	1.8	16
195	Protein heterogeneity in wheat lots using single-seed NIT â€" A Theory of Sampling (TOS) breakdown of all sampling and analytical errors. Chemometrics and Intelligent Laboratory Systems, 2006, 84, 142-152.	1.8	15
196	Application of Multi-Way Analysis to 2D NMR Data. Annual Reports on NMR Spectroscopy, 2006, 59, 207-233.	0.7	15
197	DoubleSlicing: A non-iterative single profile multi-exponential curve resolution procedure. Journal of Magnetic Resonance, 2007, 189, 286-292.	1.2	15
198	Measurement of Boar Taint in Porcine Fat Using a High-Throughput Gas Chromatography–Mass Spectrometry Protocol. Journal of Agricultural and Food Chemistry, 2014, 62, 9420-9427.	2.4	15

#	Article	IF	Citations
199	Quantitative determination of mold growth and inhibition by multispectral imaging. Food Control, 2015, 55, 82-89.	2.8	15
200	Simultaneous quantification of the boar-taint compounds skatole and androstenone by surface-enhanced Raman scattering (SERS) and multivariate data analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 7787-7795.	1.9	15
201	Cool-Climate Red Winesâ€"Chemical Composition and Comparison of Two Protocols for 1Hâ€"NMR Analysis. Molecules, 2018, 23, 160.	1.7	15
202	Comparative Chemometric Analysis of Transverse Low-field 1 H NMR Relaxation Data., 1999,, 217-225.		14
203	Bulk Carbohydrate Grain Filling of Barley βâ€Glucan Mutants Studied by ¹ H HR MAS NMR. Cereal Chemistry, 2008, 85, 571-577.	1.1	14
204	Moving from recipe-driven to measurement-based cleaning procedures: Monitoring the Cleaning-In-Place process of whey filtration units by ultraviolet spectroscopy and chemometrics. Journal of Food Engineering, 2014, 126, 82-88.	2.7	14
205	Identification of weak and gender specific effects in a short $3\hat{A}$ weeks intervention study using barley and oat mixed linkage \hat{I}^2 -glucan dietary supplements: a human fecal metabolome study by GC-MS. Metabolomics, 2017, 13, 108.	1.4	14
206	Ancient Danish Apple Cultivars—A Comprehensive Metabolite and Sensory Profiling of Apple Juices. Metabolites, 2019, 9, 139.	1.3	14
207	Insight into the Functionality of Microbial Exopolysaccharides by NMR Spectroscopy and Molecular Modeling. Frontiers in Microbiology, 2015, 6, 1374.	1.5	13
208	Near Infrared Spectroscopy—A Unique Window of Opportunities. NIR News, 2016, 27, 14-17.	1.6	13
209	The foodome of bivalve molluscs: From hedonic eating to healthy diet. Journal of Food Composition and Analysis, 2018, 69, 13-19.	1.9	13
210	Prediction of \hat{l} ±-Lactalbumin and \hat{l}^2 -Lactoglobulin Composition of Aqueous Whey Solutions Using Fourier Transform Mid-Infrared Spectroscopy and Near-Infrared Spectroscopy. Applied Spectroscopy, 2021, 75, 718-727.	1.2	13
211	Simulations of the aqueous solvation of trilaurin. Journal of Agricultural and Food Chemistry, 1994, 42, 2099-2107.	2.4	12
212	Near-Infrared Spectroscopy Using a Supercontinuum Laser: Application to Long Wavelength Transmission Spectra of Barley Endosperm and Oil. Applied Spectroscopy, 2016, 70, 1176-1185.	1.2	12
213	Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics: The challenge of inherently intercorrelated response functions. Analytica Chimica Acta, 2017, 962, 15-23.	2.6	12
214	Biogenic amines: a key freshness parameter of animal protein products in the coming circular economy. Current Opinion in Food Science, 2018, 22, 167-173.	4.1	12
215	Post-mortem Changes in Porcine M. Longissimus Studied by Solid-State13C Cross-Polarization Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Journal of Agricultural and Food Chemistry, 2003, 51, 2064-2069.	2.4	11
216	Detecting variation in ultrafiltrated milk permeates â€" Infrared spectroscopy signatures and external factor orthogonalization. Chemometrics and Intelligent Laboratory Systems, 2010, 104, 243-248.	1.8	11

#	Article	IF	Citations
217	Metabolic responses of clams, Ruditapes decussatus and Ruditapes philippinarum, to short-term exposure to lead and zinc. Marine Pollution Bulletin, 2016, 107, 292-299.	2.3	11
218	Consumption of regular-fat vs reduced-fat cheese reveals gender-specific changes in LDL particle size - a randomized controlled trial. Nutrition and Metabolism, 2018, 15, 61.	1.3	11
219	Human urine 1H NMR metabolomics reveals alterations of protein and carbohydrate metabolism when comparing habitual Average Danish diet vs. healthy New Nordic diet. Nutrition, 2020, 79-80, 110867.	1.1	11
220	Spectroscopy for Process Analytical Technology (PAT)., 2010,, 2651-2661.		10
221	Interval-Based Chemometric Methods in NMR Foodomics. Data Handling in Science and Technology, 2013, 28, 449-486.	3.1	10
222	New insights from a \hat{l}^2 -glucan human intervention study using NMR metabolomics. Food Research International, 2014, 63, 210-217.	2.9	10
223	Fluorescence Spectroscopy in Process Analytical Technology (PAT): Simultaneous Quantification of Two Active Pharmaceutical Ingredients in a Tablet Formulation. Applied Spectroscopy, 2015, 69, 323-331.	1.2	10
224	Untargeted GCâ€MS Metabolomics Reveals Changes in the Metabolite Dynamics of Industrial Scale Batch Fermentations of Streptoccoccus thermophilus Broth. Biotechnology Journal, 2017, 12, 1700400.	1.8	10
225	Investigation of Variations in the Human Urine Metabolome amongst European Populations: An Exploratory Search for Biomarkers of People at Riskâ€ofâ€Poverty. Molecular Nutrition and Food Research, 2019, 63, e1800216.	1.5	10
226	Chemometric Classification of Cocoa Bean Shells Based on Their Polyphenolic Profile Determined by RP-HPLC-PDA Analysis and Spectrophotometric Assays. Antioxidants, 2021, 10, 1533.	2.2	10
227	Non-volatile molecular composition and discrimination of single grape white wines of Chardonnay, Riesling, Sauvignon Blanc and Silvaner using untargeted GC-MS analysis. Food Chemistry, 2022, 369, 130878.	4.2	10
228	Can spectroscopy in combination with chemometrics replace minks in digestibility tests?. Journal of the Science of Food and Agriculture, 2000, 80, 365-374.	1.7	9
229	Dioxin screening in fish product by pattern recognition of biomarkers. Chemosphere, 2007, 67, S28-S35.	4.2	9
230	How the energy evaluation method used in the geometry optimization step affect the quality of the subsequent QSAR/QSPR models. Journal of Computer-Aided Molecular Design, 2010, 24, 17-22.	1.3	9
231	Structurally different mixed linkage \hat{l}^2 -glucan supplements differentially increase secondary bile acid excretion in hypercholesterolaemic rat faeces. Food and Function, 2020, 11, 514-523.	2.1	9
232	The plasma metabolome of Atlantic salmon as studied by 1H NMR spectroscopy using standard operating procedures: effect of aquaculture location and growth stage. Metabolomics, 2021, 17, 50.	1.4	9
233	Human Blood Lipoprotein Predictions from ¹ H NMR Spectra: Protocol, Model Performances, and Cage of Covariance. Analytical Chemistry, 2022, 94, 628-636.	3.2	9
234	Protein residual fouling identification on UF membranes using ATR-FT-IR and multivariate curve resolution. Chemometrics and Intelligent Laboratory Systems, 2015, 144, 39-47.	1.8	8

#	Article	lF	Citations
235	Long wavelength near-infrared transmission spectroscopy of barley seeds using a supercontinuum laser: Prediction of mixed-linkage beta-glucan content. Analytica Chimica Acta, 2017, 986, 101-108.	2.6	8
236	The spatial composition of porcine adipose tissue investigated by multivariate curve resolution of near infrared spectra: Relationships between fat, the degree of unsaturation and water. Journal of Near Infrared Spectroscopy, 2017, 25, 45-53.	0.8	8
237	Characterization of Encapsulated Flavor Systems by NIR and Low-field TD-NMR: A Chemometric Approach. Food Biophysics, 2008, 3, 33-47.	1.4	7
238	Measurement of Active Content in Escitalopram Tablets by a Near-Infrared Transmission Spectroscopy Model that Encompasses Batch Variability. Journal of Pharmaceutical Sciences, 2013, 102, 1268-1280.	1.6	7
239	The Effect of Season on the Metabolic Profile of the European Clam Ruditapes decussatus as Studied by 1H-NMR Spectroscopy. Metabolites, 2017, 7, 36.	1.3	7
240	First-principles identification of C-methyl-scyllo-inositol (mytilitol) – A new species-specific metabolite indicator of geographic origin for marine bivalve molluscs (Mytilus and Ruditapes spp.). Food Chemistry, 2020, 328, 126959.	4.2	7
241	Human Fecal Metabolome Reflects Differences in Body Mass Index, Physical Fitness, and Blood Lipoproteins in Healthy Older Adults. Metabolites, 2021, 11, 717.	1.3	7
242	Interactive graphical optimization of potential energy function parameters in the consistent force field. Computers & Chemistry, 1994, 18, 397-403.	1.2	6
243	Rapid dioxin assessment in fish products by fatty acid pattern recognition. Analyst, The, 2004, 129, 553.	1.7	6
244	A Quantitative Structureâ 'Property Relationship Study of the Release of Some Esters and Alcohols from Barley and Oat \hat{l}^2 -Glucan Matrices. Journal of Agricultural and Food Chemistry, 2009, 57, 4924-4930.	2.4	6
245	Bulk Functionality Diversification by Unsupervised Singleâ€Kernel Nearâ€Infrared (SKNIR) Sorting of Wheat. Cereal Chemistry, 2009, 86, 706-713.	1.1	6
246	Metabolic profiling of lymph from pigs fed with \hat{l}^2 -glucan by high-resolution 1H NMR spectroscopy. Livestock Science, 2010, 133, 38-41.	0.6	6
247	Exploratory Study of Potato Cultivar Differences in Sensory and Hedonistic Applicability Tests. Potato Research, 2011, 54, 13-28.	1.2	6
248	Investigation of UF and MF Membrane Residual Fouling in Full-Scale Dairy Production Using FT-IR to Quantify Protein and Fat. International Journal of Food Engineering, 2015, 11, 1-15.	0.7	6
249	Data on the changes of the mussels \times^3 metabolic profile under different cold storage conditions. Data in Brief, 2016, 7, 951-957.	0.5	6
250	Metabolic changes of genetically engineered grapes (Vitis vinifera L.) studied by 1H-NMR, metabolite heatmaps and iPLS. Metabolomics, 2016, 12, 1.	1.4	6
251	Simultaneous classification of multiple classes in NMR metabolomics and vibrational spectroscopy using interval-based classification methods: iECVA vs iPLS-DA. Analytica Chimica Acta, 2018, 1021, 20-27.	2.6	6
252	Repeatability and reproducibility of lipoprotein particle profile measurements in plasma samples by ultracentrifugation. Clinical Chemistry and Laboratory Medicine, 2019, 58, 103-115.	1.4	6

#	Article	lF	CITATIONS
253	Three different Fourierâ€transform midâ€infrared sampling techniques to characterize bioâ€organic samples. Journal of Environmental Quality, 2020, 49, 1310-1321.	1.0	6
254	Chemometric Analysis of NMR Spectra. , 2017, , 1-20.		6
255	Effects of Water Stress, Defoliation and Crop Thinning on Vitis vinifera L. cv. Solaris: Part I: Plant Responses, Fruit Development and Fruit Quality. Metabolites, 2022, 12, 363.	1.3	6
256	Modeling of Temperature-Induced Near-Infrared and Low-Field Time-Domain Nuclear Magnetic Resonance Spectral Variation: Chemometric Prediction of Limonene and Water Content in Spray-Dried Delivery Systems. Applied Spectroscopy, 2009, 63, 141-152.	1.2	5
257	The Shining Future of near Infrared Spectroscopy in Plant Phenomics, Crop Sorting and Biofuel Production. NIR News, 2016, 27, 20-23.	1.6	5
258	SERS spectroscopy for detection of hydrogen cyanide in breath from children colonised with P. aeruginosa. Analytical Methods, 2017, 9, 5757-5762.	1.3	5
259	A New Principle for Unique Spectral Decomposition of 2D NMR Data. Special Publication - Royal Society of Chemistry, 0, , 195-203.	0.0	5
260	Monitoring of the Rioja red wine production process by <scp>¹H</scp> â€ <scp>NMR</scp> spectroscopy. Journal of the Science of Food and Agriculture, 2022, 102, 3808-3816.	1.7	5
261	Three-Dimensional Images of Porcine Carcass Fat Quality Using Spatially Resolved near Infrared Spectroscopy. NIR News, 2013, 24, 9-11.	1.6	4
262	Vibrational Spectroscopy in Food Processing. , 2017, , 582-589.		4
263	Plasma Metabolomics to Evaluate Progression of Necrotising Enterocolitis in Preterm Pigs. Metabolites, 2021, 11, 283.	1.3	4
264	NIR Data Exploration and Regression by Chemometricsâ€"A Primer. , 2021, , 127-189.		4
265	Chemometric Analysis of NMR Spectra. , 2018, , 1649-1668.		3
266	Diagnosing indirect relationships in multivariate calibration models. Journal of Chemometrics, 2021, 35, e3366.	0.7	3
267	On-Line Real-Time Monitoring of a Rapid Enzymatic Oil Degumming Process: A Feasibility Study Using Free-Run Near-Infrared Spectroscopy. Foods, 2021, 10, 2368.	1.9	3
268	Quantitative vibrational spectroscopy on pectins. Prediction of the degree of esterification by chemometrics. Progress in Biotechnology, 1996, , 541-548.	0.2	2
269	ICNIRS 2017, Copenhagen. NIR News, 2017, 28, 4-6.	1.6	2
270	Spectroscopy for Process Analytical Technology (PAT)., 2017,, 188-197.		2

#	Article	IF	CITATIONS
271	Quantitative Analysis of Time Domain NMR Relaxation Data. , 2017, , 1-19.		2
272	Multivariate analysis of time domain NMR signals in relation to food quality. Special Publication - Royal Society of Chemistry, 0, , 239-254.	0.0	2
273	IDDF2020-ABS-0174â€Onset of hypertriglyceridemia in relation to dietary intake, gut microbiome and metabolomics signatures among home dwelling elderly. , 2020, , .		2
274	Crystal structure and molecular mechanics analysis of methyl 6-O-(N-heptylcarbamoyl)-α-d-glucopyranoside (Hecameg). Carbohydrate Research, 1994, 264, 161-171.	1.1	1
275	Single-Kernel near Infrared Analysis of Bulk Wheat Heterogeneityâ€"A Theory of Sampling Reference Study. NIR News, 2008, 19, 4-7.	1.6	1
276	Investigating Depth Profiles from Porcine Adipose Tissue by HR MAS NMR Spectroscopy. Special Publication - Royal Society of Chemistry, 2013, , 81-89.	0.0	1
277	Physiological Genetics Reformed: Bridging the Genome-to-Phenome Gap by Coherent Chemical Fingerprints – the Global Coordinator. Trends in Plant Science, 2021, 26, 324-337.	4.3	1
278	Monitoring Thermal Processes by NMR Technology. , 2005, , 553-575.		0
279	In honor of Rasmus Bro for being awarded with the 10th Herman Wold medal in gold. Journal of Chemometrics, 2014, 28, 606-607.	0.7	O
280	Quantitative Analysis of Time Domain NMR Relaxation Data. , 2018, , 1669-1686.		0
281	Urinary and plasma metabolome of farm mink ($<$ i>Neovison vison $<$ i>) after an intervention with raw or cooked poultry offal: a $<$ sup $>$ 1 $<$ /sup $>$ H NMR investigation. Archives of Animal Nutrition, 2022, 76, 74-91.	0.9	0
282	Quantification of lipoprotein subfractions using 1H-NMR and chemometrics. Special Publication - Royal Society of Chemistry, 0, , 101-109.	0.0	0