
## Liang Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9155218/publications.pdf Version: 2024-02-01



Ι ΙΑΝΟ ΥΑΝ

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Magneticâ€Field Effects in Organic Semiconducting Materials and Devices. Advanced Materials, 2009, 21, 1500-1516.                                                                                        | 21.0 | 327       |
| 2  | Mobility-Controlled Performance of Thick Solar Cells Based on Fluorinated Copolymers. Journal of the American Chemical Society, 2014, 136, 15566-15576.                                                  | 13.7 | 249       |
| 3  | Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nature Communications, 2019, 10, 1276.                                  | 12.8 | 222       |
| 4  | Controlling Molecular Weight of a High Efficiency Donorâ€Acceptor Conjugated Polymer and<br>Understanding Its Significant Impact on Photovoltaic Properties. Advanced Materials, 2014, 26,<br>4456-4462. | 21.0 | 190       |
| 5  | Organic Solar Cells beyond One Pair of Donor–Acceptor: Ternary Blends and More. Journal of<br>Physical Chemistry Letters, 2013, 4, 1802-1810.                                                            | 4.6  | 186       |
| 6  | Solution-processed copper–nickel nanowire anodes for organic solar cells. Nanoscale, 2014, 6, 5980.                                                                                                      | 5.6  | 170       |
| 7  | Twoâ€Dimensional Organic–Inorganic Hybrid Perovskites: A New Platform for Optoelectronic<br>Applications. Advanced Materials, 2018, 30, e1802041.                                                        | 21.0 | 138       |
| 8  | Panchromatic Sequentially Cast Ternary Polymer Solar Cells. Advanced Materials, 2017, 29, 1604603.                                                                                                       | 21.0 | 87        |
| 9  | Tuning Fluorinated Benzotriazole Polymers through Alkylthio Substitution and Selenophene<br>Incorporation for Bulk Heterojunction Solar Cells. Macromolecules, 2014, 47, 2289-2295.                      | 4.8  | 75        |
| 10 | Energy transfer mechanisms in layered 2D perovskites. Journal of Chemical Physics, 2018, 148, 134706.                                                                                                    | 3.0  | 70        |
| 11 | A General Approach toward Electron Deficient Triazole Units to Construct Conjugated Polymers for<br>Solar Cells. Chemistry of Materials, 2015, 27, 6470-6476.                                            | 6.7  | 69        |
| 12 | General Post-annealing Method Enables High-Efficiency Two-Dimensional Perovskite Solar Cells. ACS<br>Applied Materials & Interfaces, 2018, 10, 33187-33197.                                              | 8.0  | 66        |
| 13 | Aryl-Perfluoroaryl Interaction in Two-Dimensional Organic–Inorganic Hybrid Perovskites Boosts<br>Stability and Photovoltaic Efficiency. , 2019, 1, 171-176.                                              |      | 63        |
| 14 | Triplet–charge annihilation versus triplet–triplet annihilation in organic semiconductors. Journal of<br>Materials Chemistry C, 2013, 1, 1330-1336.                                                      | 5.5  | 59        |
| 15 | Fluorinated Thiophene Units Improve Photovoltaic Device Performance of Donor–Acceptor<br>Copolymers. Chemistry of Materials, 2017, 29, 5990-6002.                                                        | 6.7  | 57        |
| 16 | Alkyl–Aryl Cation Mixing in Chiral 2D Perovskites. Journal of the American Chemical Society, 2021, 143,<br>18114-18120.                                                                                  | 13.7 | 57        |
| 17 | High Seebeck Effects from Hybrid Metal/Polymer/Metal Thinâ€Film Devices. Advanced Materials, 2011, 23,<br>4120-4124.                                                                                     | 21.0 | 48        |
| 18 | Comparing non-fullerene acceptors with fullerene in polymer solar cells: a case study with FTAZ and<br>PyCNTAZ. Journal of Materials Chemistry A, 2017, 5, 4886-4893.                                    | 10.3 | 44        |

LIANG YAN

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Structural Origin of Chiroptical Properties in Perovskite Nanocrystals with Chiral Organic<br>Ligands. Advanced Functional Materials, 2022, 32, .                                                       | 14.9 | 43        |
| 20 | Green-Solvent-Processed Conjugated Polymers for Organic Solar Cells: The Impact of Oligoethylene<br>Glycol Side Chains. ACS Applied Polymer Materials, 2019, 1, 804-814.                                    | 4.4  | 39        |
| 21 | Giant Magnetic Field Effects on Electroluminescence in Electrochemical Cells. Advanced Materials, 2011, 23, 2216-2220.                                                                                      | 21.0 | 29        |
| 22 | Roles of Interfacial Modifiers in Hybrid Solar Cells: Inorganic/Polymer Bilayer vs<br>Inorganic/Polymer:Fullerene Bulk Heterojunction. ACS Applied Materials & Interfaces, 2014, 6,<br>803-810.             | 8.0  | 29        |
| 23 | A molecular tandem cell for efficient solar water splitting. Proceedings of the National Academy of<br>Sciences of the United States of America, 2020, 117, 13256-13260.                                    | 7.1  | 28        |
| 24 | Donor polymer fluorination doubles the efficiency in non-fullerene organic photovoltaics. Journal of Materials Chemistry A, 2017, 5, 22536-22541.                                                           | 10.3 | 27        |
| 25 | Formation of supramolecular hydrogels with controlled microstructures and stability via<br>molecular assembling in a two-component system. Journal of Colloid and Interface Science, 2007, 307,<br>280-287. | 9.4  | 25        |
| 26 | Magneto-Dielectric Effects Induced by Optically-Generated Intermolecular Charge-Transfer States in Organic Semiconducting Materials. Scientific Reports, 2013, 3, 2812.                                     | 3.3  | 25        |
| 27 | Real Function of Semiconducting Polymer in GaAs/Polymer Planar Heterojunction Solar Cells. ACS<br>Nano, 2013, 7, 6619-6626.                                                                                 | 14.6 | 24        |
| 28 | Coherent control of asymmetric spintronic terahertz emission from two-dimensional hybrid metal halides. Nature Communications, 2021, 12, 5744.                                                              | 12.8 | 24        |
| 29 | Distinguishing Energy- and Charge-Transfer Processes in Layered Perovskite Quantum Wells with<br>Two-Dimensional Action Spectroscopies. Journal of Physical Chemistry Letters, 2020, 11, 4570-4577.         | 4.6  | 19        |
| 30 | Effect of Cyano Substitution on Conjugated Polymers for Bulk Heterojunction Solar Cells. ACS Applied Polymer Materials, 2019, 1, 3313-3322.                                                                 | 4.4  | 17        |
| 31 | Charge Photogeneration in Organic Photovoltaics: Role of Hot versus Cold Chargeâ€Transfer Excitons.<br>Advanced Energy Materials, 2016, 6, 1301032.                                                         | 19.5 | 16        |
| 32 | Tuning of spin-orbit coupling in metal-free conjugated polymers by structural conformation. Physical<br>Review Materials, 2020, 4, .                                                                        | 2.4  | 16        |
| 33 | Morphological Effects on the Small-Molecule-Based Solution-Processed Organic Solar Cells. ACS<br>Applied Materials & Interfaces, 2014, 6, 15767-15773.                                                      | 8.0  | 15        |
| 34 | Enhancing Photovoltaic Performance of Aromatic Ammoniumâ€based Twoâ€Dimensional<br>Organicâ€Inorganic Hybrid Perovskites via Tuning CH··I€ Interaction. Solar Rrl, 2020, 4, 1900374.                        | 5.8  | 15        |
| 35 | Utilizing Difluorinated Thiophene Units To Improve the Performance of Polymer Solar Cells.<br>Macromolecules, 2019, 52, 6523-6532.                                                                          | 4.8  | 14        |
| 36 | Functionalization of Benzotriazole-Based Conjugated Polymers for Solar Cells: Heteroatom vs<br>Substituents. ACS Applied Polymer Materials, 2021, 3, 30-41.                                                 | 4.4  | 14        |

LIANG YAN

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Changing inter-molecular spin-orbital coupling for generating magnetic field effects in phosphorescent organic semiconductors. Applied Physics Letters, 2012, 100, 013301.                                                                       | 3.3  | 12        |
| 38 | Magnetocurrent of Charge-Polarizable C <sub>60</sub> -Diphenylaminofluorene Monoadduct-Derived<br>Magnetic Nanocomposites. Journal of the American Chemical Society, 2012, 134, 3549-3554.                                                       | 13.7 | 12        |
| 39 | Orientation effect on GaAs/ultrathin polymer/PEDOT:PSS hybrid solar cell. Organic Electronics, 2015, 16, 71-76.                                                                                                                                  | 2.6  | 11        |
| 40 | Charge Generation and Mobility-Limited Performance of Bulk Heterojunction Solar Cells with a<br>Higher Adduct Fullerene. Journal of Physical Chemistry C, 2017, 121, 10305-10316.                                                                | 3.1  | 11        |
| 41 | Assembling and releasing performance of supramolecular hydrogels formed from simple drug molecule as the hydrogelator. Chinese Chemical Letters, 2007, 18, 1009-1012.                                                                            | 9.0  | 10        |
| 42 | The effect of passivation on different GaAs surfaces. Applied Physics Letters, 2013, 103, 173902.                                                                                                                                                | 3.3  | 10        |
| 43 | Nonlinear fluorescence spectroscopy of layered perovskite quantum wells. Journal of Chemical<br>Physics, 2020, 153, 134202.                                                                                                                      | 3.0  | 10        |
| 44 | Positive and negative magnetic field effects in organic semiconducting materials. Synthetic Metals, 2009, 159, 2323-2325.                                                                                                                        | 3.9  | 9         |
| 45 | Nonlinear Photocurrent Spectroscopy of Layered 2D Perovskite Quantum Wells. Journal of Physical<br>Chemistry Letters, 2019, 10, 7362-7367.                                                                                                       | 4.6  | 9         |
| 46 | Elucidation of Quantum-Well-Specific Carrier Mobilities in Layered Perovskites. Journal of Physical<br>Chemistry Letters, 2021, 12, 1116-1123.                                                                                                   | 4.6  | 9         |
| 47 | Multidimensional time-of-flight spectroscopy. Journal of Chemical Physics, 2021, 154, 220901.                                                                                                                                                    | 3.0  | 7         |
| 48 | Enhanced π–d Electron Coupling in the Excited State by Combining Intramolecular Chargeâ€Transfer<br>States with Surfaceâ€Modified Magnetic Nanoparticles in Organic–Magnetic Nanocomposites. Advanced<br>Electronic Materials, 2015, 1, 1500058. | 5.1  | 5         |
| 49 | Probing Carrier Transport in Layered Perovskites with Nonlinear Optical and Photocurrent Spectroscopies. Journal of Physical Chemistry C, 2021, 125, 8021-8030.                                                                                  | 3.1  | 4         |
| 50 | Origin of layered perovskite device efficiencies revealed by multidimensional time-of-flight spectroscopy. Journal of Chemical Physics, 2022, 156, 084202.                                                                                       | 3.0  | 3         |
| 51 | Direct Optical Observation of Stimulated Emission from Hot Charge Transfer Excitons in Bulk<br>Heterojunction Polymer Solar Cells. Journal of Physical Chemistry C, 2015, 119, 19697-19702.                                                      | 3.1  | 2         |
| 52 | PREPARATION OF A HYDROGEN BONDED SUPRAMOLECULAR HYDROGELS WITH TWO DIMENSIONAL AGGREGATE STRUCTURE. Acta Polymerica Sinica, 2009, 007, 397-400.                                                                                                  | 0.0  | 2         |
| 53 | Polymer Blends from Optoelectronics to Spintronics. ACS Symposium Series, 2010, , 85-92.                                                                                                                                                         | 0.5  | 1         |
| 54 | Organic Photovoltaics: Charge Photogeneration in Organic Photovoltaics: Role of Hot versus Cold<br>Chargeâ€Transfer Excitons (Adv. Energy Mater. 1/2016). Advanced Energy Materials, 2016, 6, .                                                  | 19.5 | 1         |

| #  | Article                                                                                  | IF | CITATIONS |
|----|------------------------------------------------------------------------------------------|----|-----------|
| 55 | Non-Covalent Interactions in Organic/Inorganic Hybrid 2D Perovskites. , 2022, , 153-193. |    | Ο         |