
Simon G Krattinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/915403/publications.pdf Version: 2024-02-01

SIMON C. KDATTINCED

#	Article	IF	CITATIONS
1	A Putative ABC Transporter Confers Durable Resistance to Multiple Fungal Pathogens in Wheat. Science, 2009, 323, 1360-1363.	12.6	1,140
2	Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588, 277-283.	27.8	513
3	Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theoretical and Applied Genetics, 2009, 119, 889-898.	3.6	342
4	Genebank genomics highlights the diversity of a global barley collection. Nature Genetics, 2019, 51, 319-326.	21.4	322
5	The maize disease resistance gene <i>Htn1</i> against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8780-8785.	7.1	302
6	Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biology, 2016, 17, 221.	8.8	265
7	Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nature Biotechnology, 2017, 35, 793-796.	17.5	218
8	The NLR-Annotator Tool Enables Annotation of the Intracellular Immune Receptor Repertoire. Plant Physiology, 2020, 183, 468-482.	4.8	147
9	Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene in wheat. Theoretical and Applied Genetics, 2017, 130, 1-12.	3.6	130
10	The wheat <i><scp>L</scp>r34</i> gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnology Journal, 2013, 11, 847-854.	8.3	116
11	Abscisic acid is a substrate of the <scp>ABC</scp> transporter encoded by the durable wheat disease resistance gene <i>Lr34</i> . New Phytologist, 2019, 223, 853-866.	7.3	102
12	Functional variability of the <i>Lr34</i> durable resistance gene in transgenic wheat. Plant Biotechnology Journal, 2012, 10, 477-487.	8.3	99
13	Molecular genetics and evolution of disease resistance in cereals. New Phytologist, 2016, 212, 320-332.	7.3	99
14	The wheat durable, multipathogen resistance gene <i>Lr34</i> confers partial blast resistance in rice. Plant Biotechnology Journal, 2016, 14, 1261-1268.	8.3	98
15	Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theoretical and Applied Genetics, 2006, 113, 1049-1062.	3.6	82
16	<i>Lr34</i> multiâ€pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species. Plant Journal, 2011, 65, 392-403.	5.7	79
17	Recent emergence of the wheat Lr34 multi-pathogen resistance: insights from haplotype analysis in wheat, rice, sorghum and Aegilops tauschii. Theoretical and Applied Genetics, 2013, 126, 663-672.	3.6	79
18	The durable wheat disease resistance gene <i>Lr34</i> confers common rust and northern corn leaf blight resistance in maize. Plant Biotechnology Journal, 2017, 15, 489-496.	8.3	75

SIMON G KRATTINGER

#	Article	IF	CITATIONS
19	Fungal resistance mediated by maize wallâ€associated kinase Zm <scp>WAK</scp> â€ <scp>RLK</scp> 1 correlates with reduced benzoxazinoid content. New Phytologist, 2019, 221, 976-987.	7.3	71
20	Advances in Wheat and Pathogen Genomics: Implications for Disease Control. Annual Review of Phytopathology, 2018, 56, 67-87.	7.8	66
21	Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nature Communications, 2020, 11, 4488.	12.8	63
22	A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat. Nature Communications, 2021, 12, 956.	12.8	63
23	Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nature Genetics, 2022, 54, 227-231.	21.4	63
24	The <i>Lr34</i> adult plant rust resistance gene provides seedling resistance in durum wheat without senescence. Plant Biotechnology Journal, 2017, 15, 894-905.	8.3	56
25	Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome dynamics between two wheat cultivars. Genome Biology, 2018, 19, 104.	8.8	54
26	The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum. Plant Biotechnology Journal, 2017, 15, 1387-1396.	8.3	52
27	Unlocking the diversity of genebanks: whole-genome marker analysis of Swiss bread wheat and spelt. Theoretical and Applied Genetics, 2018, 131, 407-416.	3.6	47
28	The wheat resistance gene <i>Lr34</i> results in the constitutive induction of multiple defense pathways in transgenic barley. Plant Journal, 2015, 84, 202-215.	5.7	45
29	Pathogenâ€inducible <i>Ta</i> â€ <i>Lr34res</i> expression in heterologous barley confers disease resistance without negative pleiotropic effects. Plant Biotechnology Journal, 2018, 16, 245-253.	8.3	39
30	Analysis of Intraspecies Diversity in Wheat and Barley Genomes Identifies Breakpoints of Ancient Haplotypes and Provides Insight into the Structure of Diploid and Hexaploid Triticeae Gene Pools Â. Plant Physiology, 2009, 149, 258-270.	4.8	38
31	Orthologous receptor kinases quantitatively affect the host status of barley to leaf rust fungi. Nature Plants, 2019, 5, 1129-1135.	9.3	37
32	Precision Phenotyping Reveals Novel Loci for Quantitative Resistance to Septoria Tritici Blotch. Plant Phenomics, 2019, 2019, 3285904.	5.9	37
33	A new player contributing to durable Fusarium resistance. Nature Genetics, 2019, 51, 1070-1071.	21.4	36
34	Map-Based Cloning of Genes in Triticeae (Wheat and Barley). , 2009, , 337-357.		33
35	Rapid gene cloning in cereals. Theoretical and Applied Genetics, 2019, 132, 699-711.	3.6	26
36	Alleles of a wallâ€associated kinase gene account for three of the major northern corn leaf blight resistance loci in maize. Plant Journal, 2021, 106, 526-535.	5.7	23

SIMON G KRATTINGER

#	Article	IF	CITATIONS
37	Genomic compartments in barley. Nature, 2017, 544, 424-425.	27.8	18
38	Updated inventory, evolutionary and expression analyses of G (PDR) type ABC transporter genes of rice. Plant Physiology and Biochemistry, 2019, 142, 429-439.	5.8	17
39	Comparative Transcriptome Analysis of Wheat Lines in the Field Reveals Multiple Essential Biochemical Pathways Suppressed by Obligate Pathogens. Frontiers in Plant Science, 2021, 12, 720462.	3.6	14
40	The long road to engineering durable disease resistance in wheat. Current Opinion in Biotechnology, 2022, 73, 270-275.	6.6	14
41	Relationships among the A Genomes of Triticum L. Species as Evidenced by SSR Markers, in Iran. International Journal of Molecular Sciences, 2010, 11, 4309-4325.	4.1	11
42	A new player in race-specific resistance. Nature Plants, 2018, 4, 197-198.	9.3	11
43	Population genomics and haplotype analysis in spelt and bread wheat identifies a gene regulating glume color. Communications Biology, 2021, 4, 375.	4.4	11
44	Expression of the wheat disease resistance gene Lr34 in transgenic barley leads to accumulation of abscisic acid at the leaf tip. Plant Physiology and Biochemistry, 2021, 166, 950-957.	5.8	10
45	Trapping the intruder — immune receptor domain fusions provide new molecular leads for improving disease resistance in plants. Genome Biology, 2016, 17, 23.	8.8	7
46	Resistance: Double gain with one gene. Nature Plants, 2017, 3, 17019.	9.3	6
47	Combined GC- and UHPLC-HR-MS Based Metabolomics to Analyze Durable Anti-fungal Resistance Processes in Cereals. Chimia, 2017, 71, 156-159.	0.6	6
48	Transcriptional profiling reveals no response of fungal pathogens to the durable, quantitative <i>Lr34</i> disease resistance gene of wheat. Plant Pathology, 2018, 67, 792-798.	2.4	5
49	Oat genome — sequence of a superfood. Nature Plants, 2022, 8, 602-603.	9.3	5
50	Genome-wide association study for septoria tritici blotch resistance reveals the occurrence and distribution of Stb6 in a historic Swiss landrace collection. Euphytica, 2021, 217, 1.	1.2	3
51	Large-scale Maize Seedling Infection with Exserohilum turcicum in the Greenhouse. Bio-protocol, 2017, 7, e2567.	0.4	3
52	Unconventional R proteins in the botanical tribe Triticeae. Essays in Biochemistry, 0, , .	4.7	3
53	Genomic Approaches Towards Durable Fungal Disease Resistance in Wheat. , 2015, , 369-375.		2
54	Rapid Identification of Rust Resistance Genes Through Cultivar-Specific De Novo Chromosome Assemblies. Methods in Molecular Biology, 2017, 1659, 245-255.	0.9	2

#	Article	IF	CITATIONS
55	Point Inoculation Method for Measuring Adult Plant Response of Wheat to Stripe Rust Infection. Plant Disease, 2019, 103, 1228-1233.	1.4	2
56	Impedimetric Plant Biosensor Based on Minimally Invasive and Flexible Microneedle Electrodes. , 2020, ,		2
57	Comment on †In Turkish wheat cultivars the resistance allele of LR34 is ineffective against leaf rust'. Journal of Plant Diseases and Protection, 2013, 120, 3-3.	2.9	1
58	TheLr34adult plant rust resistance gene provides seedling resistance in durum wheat without senescence. Plant Biotechnology Journal, 2016, , .	8.3	0