Simon Goodman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9153303/publications.pdf

Version: 2024-02-01

72 papers 4,064 citations

30 h-index 62 g-index

76 all docs

76 docs citations

76 times ranked 4311 citing authors

#	Article	IF	Citations
1	Origin and expansion of the world's most widespread pinniped: Rangeâ€wide population genomics of the harbour seal (<i>Phoca vitulina</i>). Molecular Ecology, 2022, 31, 1682-1699.	3.9	9
2	Assessing rates of parasite coinfection and spatiotemporal strain variation via metabarcoding: Insights for the conservation of European turtle doves <i>Streptopelia turtur</i> . Molecular Ecology, 2022, 31, 2730-2751.	3.9	8
3	Contaminations contaminate common databases. Molecular Ecology Resources, 2021, 21, 355-362.	4.8	21
4	Ferries and Environmental DNA: Underway Sampling From Commercial Vessels Provides New Opportunities for Systematic Genetic Surveys of Marine Biodiversity. Frontiers in Marine Science, 2021, 8, .	2.5	10
5	Estimating risk to ice-breeding pinnipeds from shipping in Arctic and sub-Arctic seas. Marine Policy, 2020, 111, 103694.	3.2	7
6	Natural remedies for Covid-19 as a driver of the illegal wildlife trade. Oryx, 2020, 54, 601-602.	1.0	3
7	Novel universal primers for metabarcoding environmental DNA surveys of marine mammals and other marine vertebrates. Environmental DNA, 2020, 2, 460-476.	5 . 8	26
8	The vector ecology of introduced <i>Culex quinquefasciatus</i> populations, and implications for future risk of West Nile virus emergence in the $Gal\tilde{A}_1$ pagos archipelago. Medical and Veterinary Entomology, 2019, 33, 44-55.	1.5	10
9	Caspian seal. , 2018, , 164-166.		1
10	High rates of infection by blood parasites during the nestling phase in UK Columbids with notes on ecological associations. Parasitology, 2017, 144, 622-628.	1.5	17
11	Assessment of impacts and potential mitigation for icebreaking vessels transiting pupping areas of an ice-breeding seal. Biological Conservation, 2017, 214, 213-222.	4.1	15
12	Mixing of porpoise ecotypes in southwestern UK waters revealed by genetic profiling. Royal Society Open Science, 2017, 4, 160992.	2.4	40
13	High prevalence of Trichomonas gallinae in wild columbids across western and southern Europe. Parasites and Vectors, 2017, 10, 242.	2.5	27
14	Novel avian paramyxovirus isolated from gulls in Caspian seashore in Kazakhstan. PLoS ONE, 2017, 12, e0190339.	2.5	12
15	Prevalence of Haemoproteus sp. in Gal $ ilde{A}_i$ pagos blue-footed boobies: effects on health and reproduction. Parasitology Open, 2016, 2, .	0.9	7
16	Non-cultured faecal and gastrointestinal seed samples fail to detect Trichomonad infection in clinically and sub-clinically infected columbid birds. Conservation Genetics Resources, 2016, 8, 97-99.	0.8	4
17	Complete Genome Sequence of a Novel Avian Paramyxovirus (APMV-13) Isolated from a Wild Bird in Kazakhstan. Genome Announcements, 2016, 4, .	0.8	22
18	Context-dependent associations between heterozygosity and immune variation in a wild carnivore. BMC Evolutionary Biology, 2015, 15, 242.	3.2	10

#	Article	IF	CITATIONS
19	Biogeography of Parasitic Nematode Communities in the Galápagos Giant Tortoise: Implications for Conservation Management. PLoS ONE, 2015, 10, e0135684.	2.5	15
20	The protozoan parasite <i>Trichomonas gallinae</i> causes adult and nestling mortality in a declining population of European Turtle Doves, <i>Streptopelia turtur</i> . Parasitology, 2015, 142, 490-498.	1.5	47
21	Phocine Distemper Virus: Current Knowledge and Future Directions. Viruses, 2014, 6, 5093-5134.	3.3	114
22	Using Avian Surveillance in Ecuador to Assess the Imminence of West Nile Virus Incursion to Galšpagos. EcoHealth, 2014, 11, 53-62.	2.0	9
23	Active Blood Parasite Infection Is Not Limited to the Breeding Season in a Declining Farmland Bird. Journal of Parasitology, 2014, 100, 260-266.	0.7	14
24	Questioning calls to consensus in conservation: a Q study of conservation discourses on Gal \tilde{A}_l pagos. Environmental Conservation, 2014, 41, 13-26.	1.3	32
25	The Role of Canine Distemper Virus and Persistent Organic Pollutants in Mortality Patterns of Caspian Seals (Pusa caspica). PLoS ONE, 2014, 9, e99265.	2.5	24
26	A systematic review of phenotypic responses to between-population outbreeding. Environmental Evidence, 2013, 2, 13.	2.7	38
27	Trichomonad parasite infection in four species of Columbidae in the UK. Parasitology, 2013, 140, 1368-1376.	1.5	41
28	Avian blood parasite infection during the non-breeding season: an overlooked issue in declining populations?. BMC Ecology, 2013, 13, 30.	3.0	26
29	Applying the tools of ecological immunology to conservation: a test case in the <scp>G</scp> alapagos sea lion. Animal Conservation, 2013, 16, 19-31.	2.9	30
30	Aedes Taeniorhynchus Vectorial Capacity Informs A Pre-Emptive Assessment Of West Nile Virus Establishment In Galápagos. Scientific Reports, 2013, 3, 1519.	3.3	13
31	Assessment of Caspian Seal By-Catch in an Illegal Fishery Using an Interview-Based Approach. PLoS ONE, 2013, 8, e67074.	2.5	23
32	Immune Activity, Body Condition and Human-Associated Environmental Impacts in a Wild Marine Mammal. PLoS ONE, 2013, 8, e67132.	2.5	36
33	Host selection and parasite infection in Aedes taeniorhynchus, endemic disease vector in the Galápagos Islands. Infection, Genetics and Evolution, 2012, 12, 1831-1841.	2.3	36
34	Genetic structure of red deer population in northeastern Poland in relation to the history of human interventions. Journal of Wildlife Management, 2012, 76, 1264-1276.	1.8	40
35	Stable isotope ratios of a tropical marine predator: confounding effects of nutritional status during growth. Marine Biology, 2012, 159, 873-880.	1.5	17
36	Global threats to pinnipeds. Marine Mammal Science, 2012, 28, 414-436.	1.8	176

3

#	Article	IF	CITATIONS
37	Genetic diversity, population structure and drug resistance of Mycobacterium tuberculosis in Peru. Infection, Genetics and Evolution, 2012, 12, 577-585.	2.3	33
38	Phenotypic and genetic divergence among harbour porpoise populations associated with habitat regions in the North Sea and adjacent seas. Journal of Evolutionary Biology, 2012, 25, 674-681.	1.7	11
39	Collapse of a Marine Mammal Species Driven by Human Impacts. PLoS ONE, 2012, 7, e43130.	2.5	26
40	Variation in European harbour seal immune response genes and susceptibility to phocine distemper virus (PDV). Infection, Genetics and Evolution, 2011, 11, 1616-1623.	2.3	18
41	Adaptation, isolation by distance and human-mediated transport determine patterns of gene flow among populations of the disease vector Aedes taeniorhynchus in the Galapagos Islands. Infection, Genetics and Evolution, 2011, 11, 1996-2003.	2.3	10
42	West Nile Virus Vector Competency of Culex quinquefasciatus Mosquitoes in the Galápagos Islands. American Journal of Tropical Medicine and Hygiene, 2011, 85, 426-433.	1.4	30
43	Reassessing conflicting evolutionary histories of the Paramyxoviridae and the origins of respiroviruses with Bayesian multigene phylogenies. Infection, Genetics and Evolution, 2010, 10, 97-107.	2.3	28
44	Investigating temporal changes in hybridization and introgression in a predominantly bimodal hybridizing population of invasive sika (<i>Cervus nippon</i>) and native red deer (<i>C. elaphus</i>) on the Kintyre Peninsula, Scotland. Molecular Ecology, 2010, 19, 910-924.	3.9	25
45	Seasonal effects and fine-scale population dynamics of Aedes taeniorhynchus, a major disease vector in the Galapagos Islands. Molecular Ecology, 2010, 19, 4491-4504.	3.9	21
46	Phenotypic correlates of hybridisation between red and sika deer (genus <i>Cervus</i>). Journal of Animal Ecology, 2010, 79, 414-425.	2.8	34
47	Evidence for regular ongoing introductions of mosquito disease vectors into the Galápagos Islands. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3769-3775.	2.6	79
48	Microsatellite markers characterized in the mosquito Aedes taeniorhynchus (Diptera, Culicidae), a disease vector and major pest on the American coast and the $Gal\tilde{A}_i$ pagos Islands. Infection, Genetics and Evolution, 2009, 9, 971-975.	2.3	4
49	Natural colonization and adaptation of a mosquito species in $Gal\tilde{A}_i$ pagos and its implications for disease threats to endemic wildlife. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10230-10235.	7.1	66
50	Pup Production and Breeding Distribution of the Caspian Seal (Phoca caspica) in Relation to Human Impacts. Ambio, 2008, 37, 356-361.	5.5	27
51	Pathogen evolution and disease emergence in carnivores. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 3165-3174.	2.6	148
52	Phocine distemper virus in the North and European Seas – Data and models, nature and nurture. Biological Conservation, 2006, 131, 221-229.	4.1	43
53	Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. Journal of Evolutionary Biology, 2006, 19, 1314-1326.	1.7	87
54	Predicting Pathogen Introduction: West Nile Virus Spread to Galápagos. Conservation Biology, 2006, 20, 1224-1231.	4.7	87

#	Article	IF	Citations
55	Selection and recombination drive the evolution of MHC class II DRB diversity in ungulates. Heredity, 2006, 97, 427-437.	2.6	70
56	The 1988 and 2002 phocine distemper virus epidemics in European harbour seals. Diseases of Aquatic Organisms, 2006, 68, 115-130.	1.0	215
57	Establishment of the avian disease vector Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) on the Gal $ ilde{A}_1$ pagos Islands, Ecuador. Ibis, 2005, 147, 844-847.	1.9	65
58	COLONIZATION HISTORY OF THE BALTIC HARBOR SEALS: INTEGRATING ARCHAEOLOGICAL, BEHAVIORAL, AND GENETIC DATA. Marine Mammal Science, 2005, 21, 695-716.	1.8	20
59	Recombination and the origin of sequence diversity in the DRB MHC class II locus in chamois (Rupicapra spp.). Immunogenetics, 2005, 57, 108-115.	2.4	45
60	Acquired Immunity and Stochasticity in Epidemic Intervals Impede the Evolution of Host Disease Resistance. American Naturalist, 2005, 166, 722-730.	2.1	24
61	Sequence analysis of the MHC class II DRB alleles in Alpine chamois (Rupicapra r. rupicapra). Developmental and Comparative Immunology, 2004, 28, 265-277.	2.3	31
62	Bottlenecks, drift and differentiation: the population structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Molecular Ecology, 2001, 10, 1357-1370.	3.9	127
63	Introgression Through Rare Hybridization: A Genetic Study of a Hybrid Zone Between Red and Sika Deer (Genus Cervus) in Argyll, Scotland. Genetics, 1999, 152, 355-371.	2.9	210
64	Bovine microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) Tj ETQq0 (0 rgBT /O	verlock 10 T 130
65	Patterns of extensive genetic differentiation and variation among European harbor seals (Phoca) Tj ETQq1 1 0.78 1998, 15, 104-118.	4314 rgBT 8.9	/Overlock 1 120
66	R _{ST} Calc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Molecular Ecology, 1997, 6, 881-885.	3.9	441
67	Interspecific microsatellite markers for the study of pinniped populations. Molecular Ecology, 1997, 6, 661-666.	3.9	99
68	RST Calc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Molecular Ecology, 1997, 6, 881-885.	3.9	497
69	Dinucleotide repeat polymorphisms at seven anonymous microsatellite loci cloned from the European harbour seal (Phoca vitulina vitulina). Animal Genetics, 1997, 28, 310-1.	1.7	50
70	Worldwide patterns of mitochondrial DNA differentiation in the harbor seal (Phoca vitulina). Molecular Biology and Evolution, 1996, 13, 368-382.	8.9	157
71	Breeding behavior and pup development of the Caspian seal, <i>Pusa caspica </i> . Journal of Mammalogy,	1.3	1
	0, , gyw176.		