List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9153009/publications.pdf Version: 2024-02-01

FOOD KARASHI

#	Article	IF	CITATIONS
1	TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genetics, 2008, 40, 572-574.	9.4	1,371
2	Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Human Molecular Genetics, 2010, 19, 671-683.	1.4	350
3	Loss of C9 <scp>ORF</scp> 72 impairs autophagy and synergizes with polyQ Ataxinâ€⊋ to induce motor neuron dysfunction and cell death. EMBO Journal, 2016, 35, 1276-1297.	3.5	343
4	Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. American Journal of Human Genetics, 2016, 98, 500-513.	2.6	333
5	Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Annals of Neurology, 2013, 74, 180-187.	2.8	284
6	<i>TARDBP</i> and <i>FUS</i> Mutations Associated with Amyotrophic Lateral Sclerosis: Summary and Update. Human Mutation, 2013, 34, 812-826.	1.1	216
7	FUS and TARDBP but Not SOD1 Interact in Genetic Models of Amyotrophic Lateral Sclerosis. PLoS Genetics, 2011, 7, e1002214.	1.5	167
8	Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. Journal of Medical Genetics, 2008, 46, 112-114.	1.5	162
9	Loss of Function of Glucocerebrosidase GBA2 Is Responsible for Motor Neuron Defects in Hereditary Spastic Paraplegia. American Journal of Human Genetics, 2013, 92, 238-244.	2.6	154
10	<i>SQSTM1</i> Mutations in French Patients With Frontotemporal Dementia or Frontotemporal Dementia With Amyotrophic Lateral Sclerosis. JAMA Neurology, 2013, 70, 1403-10.	4.5	153
11	Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 2004, 89, 1325-1335.	2.1	141
12	Oxidized/misfolded superoxide dismutaseâ€1: the cause of all amyotrophic lateral sclerosis?. Annals of Neurology, 2007, 62, 553-559.	2.8	137
13	Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiology of Disease, 2013, 55, 64-75.	2.1	113
14	Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). Trends in Genetics, 2015, 31, 263-273.	2.9	106
15	Zebrafish models for the functional genomics of neurogenetic disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 335-345.	1.8	95
16	Methylene Blue Protects against TDP-43 and FUS Neuronal Toxicity in C. elegans and D. rerio. PLoS ONE, 2012, 7, e42117.	1.1	88
17	ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiology of Aging, 2017, 51, 178.e1-178.e9.	1.5	86
18	Homozygous TREM2 mutation in a family with atypical frontotemporal dementia. Neurobiology of Aging, 2014, 35, 2419.e23-2419.e25.	1.5	84

#	Article	IF	CITATIONS
19	Neuroleptics as therapeutic compounds stabilizing neuromuscular transmission in amyotrophic lateral sclerosis. JCI Insight, 2017, 2, .	2.3	83
20	Failure of protein quality control in amyotrophic lateral sclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 1038-1050.	1.8	78
21	Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy. Nature Communications, 2015, 6, 7205.	5.8	76
22	Investigating the contribution of VAPB/ALS8 loss of function in amyotrophic lateral sclerosis. Human Molecular Genetics, 2013, 22, 2350-2360.	1.4	75
23	Contribution of <i>ATXN2</i> intermediary polyQ expansions in a spectrum of neurodegenerative disorders. Neurology, 2014, 83, 990-995.	1.5	70
24	Sqstm1 knock-down causes a locomotor phenotype ameliorated by rapamycin in a zebrafish model of ALS/FTLD. Human Molecular Genetics, 2015, 24, 1682-1690.	1.4	69
25	Tryptophan 32 Potentiates Aggregation and Cytotoxicity of a Copper/Zinc Superoxide Dismutase Mutant Associated with Familial Amyotrophic Lateral Sclerosis. Journal of Biological Chemistry, 2007, 282, 16329-16335.	1.6	67
26	Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy, 2022, 18, 254-282.	4.3	66
27	Fishing for causes and cures of motor neuron disorders. DMM Disease Models and Mechanisms, 2014, 7, 799-809.	1.2	60
28	Impaired proteasome function in sporadic amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 367-371.	2.3	54
29	Neuromuscular Junction Impairment in Amyotrophic Lateral Sclerosis: Reassessing the Role of Acetylcholinesterase. Frontiers in Molecular Neuroscience, 2016, 9, 160.	1.4	49
30	Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish. Human Molecular Genetics, 2008, 17, 2691-2702.	1.4	48
31	hnRNPA2B1 and hnRNPA1 mutations are rare in patients with "multisystem proteinopathy―and frontotemporal lobar degeneration phenotypes. Neurobiology of Aging, 2014, 35, 934.e5-934.e6.	1.5	47
32	In the swim of things: recent insights to neurogenetic disorders from zebrafish. Trends in Genetics, 2010, 26, 373-381.	2.9	45
33	Spatacsin and spastizin act in the same pathway required for proper spinal motor neuron axon outgrowth in zebrafish. Neurobiology of Disease, 2012, 48, 299-308.	2.1	42
34	TREM2 mutations are rare in a French cohort of patients with frontotemporal dementia. Neurobiology of Aging, 2013, 34, 2443.e1-2443.e2.	1.5	35
35	The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway. Autophagy, 2016, 12, 1406-1408.	4.3	35
36	Defining the association of TMEM106B variants among frontotemporal lobar degeneration patients with GRN mutations and C9orf72 repeat expansions. Neurobiology of Aging, 2014, 35, 2658.e1-2658.e5.	1.5	33

#	Article	IF	CITATIONS
37	Expanding the genetic and phenotypic relevance of <i>KCNB1</i> variants in developmental and epileptic encephalopathies: 27 new patients and overview of the literature. Human Mutation, 2020, 41, 69-80.	1.1	33
38	Depdc5 knockdown causes <scp>mTOR</scp> â€dependent motor hyperactivity in zebrafish. Annals of Clinical and Translational Neurology, 2018, 5, 510-523.	1.7	32
39	Proteasomes remain intact, but show early focal alteration in their composition in a mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 2008, 105, 2353-2366.	2.1	31
40	Diagnostic Challenge and Neuromuscular Junction Contribution to ALS Pathogenesis. Frontiers in Neurology, 2019, 10, 68.	1.1	27
41	Synaptic disruption and CREBâ€regulated transcription are restored by K ⁺ channel blockers in ALS. EMBO Molecular Medicine, 2021, 13, e13131.	3.3	22
42	Mutations in the PFN1 gene are not a common cause in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration in France. Neurobiology of Aging, 2013, 34, 1709.e1-1709.e2.	1.5	21
43	ALS Untangled No. 20: The Deanna Protocol. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 319-323.	1.1	19
44	Two novel COLVI long chains in zebrafish that are essential for muscle development. Human Molecular Genetics, 2015, 24, 6624-6639.	1.4	18
45	Functional characterization of a FUS mutant zebrafish line as a novel genetic model for ALS. Neurobiology of Disease, 2020, 142, 104935.	2.1	18
46	Deciphering spreading mechanisms in amyotrophic lateral sclerosis. Current Opinion in Neurology, 2015, 28, 455-461.	1.8	17
47	Transcriptomic Analysis of Zebrafish TDP-43 Transgenic Lines. Frontiers in Molecular Neuroscience, 2018, 11, 463.	1.4	17
48	Developmental and epilepsy spectrum of <i>KCNB1</i> encephalopathy with longâ€ŧerm outcome. Epilepsia, 2020, 61, 2461-2473.	2.6	17
49	TDP-43 Regulation of AChE Expression Can Mediate ALS-Like Phenotype in Zebrafish. Cells, 2021, 10, 221.	1.8	16
50	Novel genome-editing-based approaches to treat motor neuron diseases: Promises and challenges. Molecular Therapy, 2022, 30, 47-53.	3.7	13
51	Association of Rare Genetic Variants in Opioid Receptors with Tourette Syndrome. Tremor and Other Hyperkinetic Movements, 2019, 9, .	1.1	13
52	No TARDBP Mutations in a French Canadian Population of Patients With Parkinson Disease. Archives of Neurology, 2009, 66, 281-2.	4.9	12
53	Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1. Genome Medicine, 2022, 14, 7.	3.6	12
54	ALS predisposition modifiers: Knock NOX, who's there? SOD1 mice still are. European Journal of Human Genetics, 2008, 16, 140-142.	1.4	11

#	Article	IF	CITATIONS
55	Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts. Cell Stress and Chaperones, 2005, 10, 230.	1.2	10
56	Deep phenotyping unstructured data mining in an extensive pediatric database to unravel a common KCNA2 variant in neurodevelopmental syndromes. Genetics in Medicine, 2021, 23, 968-971.	1.1	9
57	ALSUntangled No. 26: Lunasin. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 622-626.	1.1	7
58	ALSUntangled No. 30: Methylcobalamin. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 536-539.	1.1	7
59	ALS Untangled No. 17: "When ALS Is Lyme― Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 487-491.	2.3	6
60	Screening UBQLN-2 in French frontotemporal lobar degeneration and frontotemporal lobar degeneration–amyotrophic lateral sclerosis patients. Neurobiology of Aging, 2013, 34, 2078.e5-2078.e6.	1.5	6
61	ALS Untangled No. 21: Fecal transplants. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 482-485.	1.1	5
62	Functional Characterization of Neurofilament Light Splicing and Misbalance in Zebrafish. Cells, 2020, 9, 1238.	1.8	3
63	ALSUntangled No. 27: Precision Stem Cell. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 282-285.	1.1	2
64	Freezing activity brief data from a new FUS mutant zebrafish line. Data in Brief, 2020, 31, 105921.	0.5	2
65	ALSUntangled No. 28: Acupuncture. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 286-289.	1.1	1
66	ALSUntangled No. 29: MitoQ. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 427-429.	1.1	1
67	Behavioral And Physiological Analysis In A Zebrafish Model Of Epilepsy. Journal of Visualized Experiments, 2021, , .	0.2	1
68	G.P.18.11 Functional characterization of strumpellin, mutated in hereditary spastic paraplegia. Neuromuscular Disorders, 2007, 17, 893.	0.3	0
69	ALSUntangled No. 35: Hyperbaric Oxygen Therapy*. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 622-624.	1.1	Ο
70	Motor Neuron Disease. , 2006, , 247-264.		0