
Yong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9152611/publications.pdf Version: 2024-02-01

Υονς Ζηλης

#	Article	IF	CITATIONS
1	Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. Journal of the European Ceramic Society, 2012, 32, 559-567.	5.7	170
2	Sintering Temperature Dependence of Energy-Storage Properties in (Ba,Sr)TiO3 Glass-Ceramics. Journal of the American Ceramic Society, 2011, 94, 1805-1810.	3.8	113
3	Effect of the Ba/Ti Ratio on the Microstructures and Dielectric Properties of Barium Titanateâ€Based Glass–Ceramics. Journal of the American Ceramic Society, 2009, 92, 1350-1353.	3.8	92
4	Effect of barium content on dielectric and energy storage properties of (Pb,La,Ba)(Zr,Sn,Ti)O3 ceramics. Ceramics International, 2015, 41, 3030-3035.	4.8	57
5	Improvement in the Microstructures and Dielectric Properties of Barium Strontium Titanate Glass–Ceramics by AlF ₃ /MnO ₂ Addition. Journal of the American Ceramic Society, 2009, 92, 1863-1866.	3.8	46
6	Temperature-dependent ferroelectric hysteresis properties of modified lead zirconate titanate ceramics. Journal of Materials Science, 2012, 47, 4299-4304.	3.7	39
7	Influence of sintering temperature on energy storage properties of BaTiO3–(Sr1â^'1.5Bi) TiO3 ceramics. Ceramics International, 2012, 38, 4765-4770.	4.8	28
8	Effects of cerium doping on dielectric properties and defect mechanism of barium strontium titanate glass-ceramics. Journal of the European Ceramic Society, 2020, 40, 712-719.	5.7	24
9	Influence of <scp>AlF</scp> ₃ Concentration on Microstructures and Energy Storage Properties of Barium Strontium Titanate Glass Ceramics. International Journal of Applied Ceramic Technology, 2013, 10, 301-306.	2.1	21
10	Crystallization mechanism and ac conductivity studies on strontium barium niobate glass–ceramics. Ceramics International, 2013, 39, 2069-2076.	4.8	21
11	Effects of MnO2 concentration on dielectric properties of barium strontium titanate glass ceramics. Ceramics International, 2012, 38, S57-S60.	4.8	19
12	Effects of sintering temperature and holding time on porosity and shrinkage of glass tubes. Ceramics International, 2016, 42, 5906-5910.	4.8	18
13	Analysis of Residual Stress in Electrical Penetration Assembly Based on a Fiber Bragg Grating Sensor. Sensors, 2019, 19, 18.	3.8	18
14	Blocking effect of crystal–glass interface in lanthanum doped barium strontium titanate glass–ceramics. Materials Research Bulletin, 2013, 48, 3817-3821.	5.2	14
15	Enhanced mechanical properties and thermal cycling stability of Al2O3-4J42 joints brazed using Ag–Cu–Ti/Cu/Ag–Cu composite filler. Ceramics International, 2021, 47, 30247-30255.	4.8	12
16	Fatigue improvement in modified lead zirconate titanate ceramics through employment of La0.8Sr0.2MnO3 buffer layers. Ceramics International, 2013, 39, 219-225.	4.8	10
17	Crystallization and thermal expansion behavior of lithium zinc silicate sealing glass. Ceramics International, 2016, 42, 11650-11653.	4.8	10
18	Lead-free BaTiO3-based ceramics modified by Bi(Mg0.5Sn0.5)O3 with enhanced energy-storage performance and charge–discharge properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 3377-3390.	2.2	10

Yong Zhang

#	Article	IF	CITATIONS
19	Influence of crystallization time on microstructures and dielectric properties of tungsten–bronze glass–ceramics. Journal of Materials Science, 2012, 47, 2535-2540.	3.7	9
20	Effect of Titanium Content on Dielectric and Energy Storage Properties of (Pb,La,Sr)(Zr,Sn,Ti)O3 Ceramics. Journal of Electronic Materials, 2015, 44, 4819-4824.	2.2	9
21	Influence of sintering temperature on microstructures and energyâ€storage properties of barium strontium titanate glassâ€ceramics prepared by sol–gel process. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2822-2829.	1.8	8
22	Dependence of Crystallization Behavior on Particle Size in Barium Strontium Titanate Glass eramics. Journal of the American Ceramic Society, 2015, 98, 2340-2343.	3.8	8
23	SiO2/Al2O3 ratio dependence of microstructures and dielectric properties in barium strontium titanate glass ceramics. Ceramics International, 2016, 42, 18453-18458.	4.8	8
24	Contributions of mechanical bonding and chemical bonding to high-temperature hermeticity of glass-to-metal compression seals. Materials and Design, 2021, 202, 109579.	7.0	8
25	Effect of SnO2 concentration on the dielectric properties of BaTiO3–(Sr1â^1.5xBix)TiO3 ceramics. Materials Chemistry and Physics, 2013, 138, 737-742.	4.0	7
26	Effect of CuO addition on crystallization and thermal expansion properties of Li 2 O–ZnO–SiO 2 glass-ceramics. Ceramics International, 2017, 43, 7099-7105.	4.8	7
27	Effect of pre-oxidization condition on glass-to-metal sealing. Journal of Non-Crystalline Solids, 2019, 521, 119488.	3.1	7
28	Determination of compressive stress in glass-to-metal seals using photoluminescence spectroscopy technique. Ceramics International, 2022, 48, 13379-13385.	4.8	7
29	Interfacial polarization arising from two contributions in glass added barium titanate ceramics. Journal of Materials Science: Materials in Electronics, 2012, 23, 2301-2305.	2.2	6
30	Characterization of PLZST-PMW dielectric ceramics. Materials Research Bulletin, 2014, 60, 183-187.	5.2	6
31	Effect of fluoride doping on impedance spectra of barium strontium titanate glass ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 4916-4922.	2.2	6
32	Dielectric relaxation investigations in barium strontium titanate glass-ceramics: Thermally stimulated depolarization current technique. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2150-2156.	1.8	6
33	Morphological evolution of oxide layer and its effect on glass-to-metal seal. Journal of Non-Crystalline Solids, 2020, 549, 120355.	3.1	5
34	Charge Carrier Relaxation Study in Glass-Added Barium Titanate Ceramics Using Thermally Stimulated Depolarization Current. Journal of Electronic Materials, 2016, 45, 4044-4051.	2.2	4
35	Effect of sintering atmosphere on the microstructure and dielectric properties of barium strontium titanate glass–ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 56-62.	2.2	4
36	Effect of calcining temperature on microstructures and electrical properties in modified lead zirconate titanate ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 2240-2244.	2.2	3

YONG ZHANG

#	Article	IF	CITATIONS
37	Relaxation processes in barium strontium titanate glassâ€ceramics by thermally simulated depolarization current. Journal of the American Ceramic Society, 2018, 102, 901.	3.8	3
38	Influence of lanthanum substitution on microstructure and impedance behavior of barium strontium titanate glass-ceramics. Journal of Applied Physics, 2019, 126, 074101.	2.5	3
39	Zinc diffusion affects the chemical stability of the borosilicate glass and AISI 304 interface. Materials Characterization, 2021, 171, 110792.	4.4	3
40	Switching retardation and heterogeneity behavior in fatigued lead zirconate titanate ceramics. Journal of Electroceramics, 2010, 25, 135-139.	2.0	2
41	Effect of lanthanum modification on dielectric relaxation behavior in lead zirconate stannate titanate antiferroelectric ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 1391-1397.	2.2	2
42	Sintering and compositional dependencies of dielectric properties in PMW–PT–PNN ceramics. Scripta Materialia, 2002, 47, 583-587.	5.2	1
43	Disappearance of Fatigue Heterogeneity Due to an Introduction of <scp><scp>La</scp></scp> _{0.8} <scp><scp>Sr</scp>_{0.2}<scp>MnO</scp> Buffer Layers in Modified Lead Zirconate Titanate Ceramics. Journal of the American Ceramic Society, 2013. 96, 3031-3034.</scp>	<si< td=""><td>ub>3</td></si<>	ub>3
44	Spatial heterogeneity of piezoelectric properties in fatigued lead zirconate titanate ceramics. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2485-2490.	1.8	1
45	Phase evolution and electrical properties of BaO–SrO–TiO2–SiO2–Al2O3-based glass ceramics prepared by sol–gel process. Journal of Sol-Gel Science and Technology, 2014, 72, 581-586.	2.4	1
46	Dependence of dielectric and energy storage properties on sintering temperature in lead lanthanum zirconate titanate antiferroelectric ceramics. Materials Research Express, 2019, 6, 126303.	1.6	1
47	Lanthanum concentration dependence of electrical properties in tin oxide thin films. Journal of Materials Science: Materials in Electronics, 2013, 24, 889-895.	2.2	О
48	Effect of SiO2/B2O3 Ratio on the Crystallization Behavior and Dielectric Properties of Barium Strontium Titanate Glass–Ceramics Prepared by Sol–Gel Process. Journal of Electronic Materials, 2018, 47, 4627-4633.	2.2	0
49	Thermally stimulated depolarization current study of oxygen-vacancy-related relaxation in lead lanthanum zirconate stannate titanate antiferroelectric ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 20997-21003.	2.2	0
50	Effect of lanthanum content on the conduction behaviors and relaxation processes of lead lanthanum zirconate titanate antiferroelectric ceramics. Ceramics International, 2020, 46, 16472-16479.	4.8	0