Faqiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9152506/publications.pdf Version: 2024-02-01

FAOLANCE

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Autophagic Degradation of the 26S Proteasome Is Mediated by the Dual ATG8/Ubiquitin Receptor RPN10 in Arabidopsis. Molecular Cell, 2015, 58, 1053-1066.	9.7	354
4	Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends in Plant Science, 2012, 17, 526-537.	8.8	349
5	The ATG1/ATG13 Protein Kinase Complex Is Both a Regulator and a Target of Autophagic Recycling in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 3761-3779.	6.6	274
6	AUTOPHAGY-RELATED11 Plays a Critical Role in General Autophagy- and Senescence-Induced Mitophagy in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 788-807.	6.6	245
7	<i>PSY3</i> , a New Member of the Phytoene Synthase Gene Family Conserved in the Poaceae and Regulator of Abiotic Stress-Induced Root Carotenogenesis Â. Plant Physiology, 2008, 146, 1333-1345.	4.8	233
8	The Maize Phytoene Synthase Gene Family: Overlapping Roles for Carotenogenesis in Endosperm, Photomorphogenesis, and Thermal Stress Tolerance À Â. Plant Physiology, 2008, 147, 1334-1346.	4.8	224
9	Autophagic Recycling Plays a Central Role in Maize Nitrogen Remobilization. Plant Cell, 2015, 27, 1389-1408.	6.6	211
10	Isolation and Characterization of the <i>Z-ISO</i> Gene Encoding a Missing Component of Carotenoid Biosynthesis in Plants Â. Plant Physiology, 2010, 153, 66-79.	4.8	203
11	Maize Y9 Encodes a Product Essential for 15-cis-ζ-Carotene Isomerization. Plant Physiology, 2007, 144, 1181-1189.	4.8	155
12	Maize multi-omics reveal roles for autophagic recycling in proteome remodelling and lipid turnover. Nature Plants, 2018, 4, 1056-1070.	9.3	124
13	The Endosomal Protein CHARGED MULTIVESICULAR BODY PROTEIN1 Regulates the Autophagic Turnover of Plastids in Arabidopsis. Plant Cell, 2015, 27, 391-402.	6.6	112
14	TRAF Family Proteins Regulate Autophagy Dynamics by Modulating AUTOPHAGY PROTEIN6 Stability in Arabidopsis. Plant Cell, 2017, 29, 890-911.	6.6	108
15	Genetic Analyses of the Arabidopsis ATG1 Kinase Complex Reveal Both Kinase-Dependent and Independent Autophagic Routes during Fixed-Carbon Starvation. Plant Cell, 2019, 31, 2973-2995.	6.6	97
16	HY5-HDA9 Module Transcriptionally Regulates Plant Autophagy in Response to Light-to-Dark Conversion and Nitrogen Starvation. Molecular Plant, 2020, 13, 515-531.	8.3	72
17	The phytoene synthase gene family in the Grasses. Plant Signaling and Behavior, 2009, 4, 208-211.	2.4	61
18	Autophagy Plays Prominent Roles in Amino Acid, Nucleotide, and Carbohydrate Metabolism during Fixed-Carbon Starvation in Maize. Plant Cell, 2020, 32, 2699-2724.	6.6	53

Faqiang Li

#	Article	IF	CITATIONS
19	<i>Arabidopsis</i> ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general autophagy and selective mitophagy. Autophagy, 2014, 10, 1466-1467.	9.1	47
20	AUTOPHAGY-RELATED14 and Its Associated Phosphatidylinositol 3-Kinase Complex Promote Autophagy in Arabidopsis. Plant Cell, 2020, 32, 3939-3960.	6.6	36
21	Autophagy in Plant: A New Orchestrator in the Regulation of the Phytohormones Homeostasis. International Journal of Molecular Sciences, 2019, 20, 2900.	4.1	30
22	SINAT E3 ligases regulate the stability of the ESCRT component FREE1 in response to iron deficiency in plants. Journal of Integrative Plant Biology, 2020, 62, 1399-1417.	8.5	25
23	Understanding and exploiting the roles of autophagy in plants through multi-omics approaches. Plant Science, 2018, 274, 146-152.	3.6	20
24	FYVE2, a phosphatidylinositol 3-phosphate effector, interacts with the COPII machinery to control autophagosome formation in Arabidopsis. Plant Cell, 2022, 34, 351-373.	6.6	19
25	Transcriptional and Epigenetic Regulation of Autophagy in Plants. Trends in Genetics, 2020, 36, 676-688.	6.7	18
26	Endomembrane Mediated-Trafficking Of Seed Storage Proteins: From Arabidopsis To Cereal Crops. Journal of Experimental Botany, 2021, , .	4.8	10
27	Regulator and substrate. Autophagy, 2012, 8, 982-984.	9.1	7
28	Analysis of Plant Autophagy. Methods in Molecular Biology, 2017, 1662, 267-280.	0.9	7
29	Network and Evolutionary Analysis Reveals Candidate Genes of Membrane Trafficking Involved in Maize Seed Development and Immune Response. Frontiers in Plant Science, 0, 13, .	3.6	0