Deniz Dalkara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9150451/publications.pdf Version: 2024-02-01

NENIZ DALKADA

#	Article	IF	CITATIONS
1	In Vivo–Directed Evolution of a New Adeno-Associated Virus for Therapeutic Outer Retinal Gene Delivery from the Vitreous. Science Translational Medicine, 2013, 5, 189ra76.	12.4	554
2	Partial recovery of visual function in a blind patient after optogenetic therapy. Nature Medicine, 2021, 27, 1223-1229.	30.7	335
3	Rod-Derived Cone Viability Factor Promotes Cone Survival by Stimulating Aerobic Glycolysis. Cell, 2015, 161, 817-832.	28.9	320
4	Inner Limiting Membrane Barriers to AAV-mediated Retinal Transduction From the Vitreous. Molecular Therapy, 2009, 17, 2096-2102.	8.2	275
5	Emerging therapies for inherited retinal degeneration. Science Translational Medicine, 2016, 8, 368rv6.	12.4	179
6	Intravitreal Injection of AAV2 Transduces Macaque Inner Retina. , 2011, 52, 2775.		177
7	A Novel Adeno-Associated Viral Variant for Efficient and Selective Intravitreal Transduction of Rat Müller Cells. PLoS ONE, 2009, 4, e7467.	2.5	176
8	LiGluR Restores Visual Responses in Rodent Models of Inherited Blindness. Molecular Therapy, 2011, 19, 1212-1219.	8.2	168
9	Targeting Channelrhodopsin-2 to ON-bipolar Cells With Vitreally Administered AAV Restores ON and OFF Visual Responses in Blind Mice. Molecular Therapy, 2015, 23, 7-16.	8.2	166
10	Molecular Evolution of Adeno-associated Virus for Enhanced Glial Gene Delivery. Molecular Therapy, 2009, 17, 2088-2095.	8.2	160
11	Rapid optical control of nociception with an ion-channel photoswitch. Nature Methods, 2012, 9, 396-402.	19.0	144
12	Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration. Journal of Clinical Investigation, 2015, 125, 105-116.	8.2	143
13	Redâ€shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina. EMBO Molecular Medicine, 2016, 8, 1248-1264.	6.9	139
14	A New Promoter Allows Optogenetic Vision Restoration with Enhanced Sensitivity in Macaque Retina. Molecular Therapy, 2017, 25, 2546-2560.	8.2	131
15	Long-distance axonal regeneration induced by CNTF gene transfer is impaired by axonal misguidance in the injured adult optic nerve. Neurobiology of Disease, 2013, 51, 202-213.	4.4	116
16	Let There Be Light: Gene and Cell Therapy for Blindness. Human Gene Therapy, 2016, 27, 134-147.	2.7	115
17	Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve. Cell Death and Disease, 2013, 4, e734-e734.	6.3	112
18	Noninvasive gene delivery to foveal cones for vision restoration. JCI Insight, 2018, 3, .	5.0	102

#	Article	IF	CITATIONS
19	AAV Mediated GDNF Secretion From Retinal Glia Slows Down Retinal Degeneration in a Rat Model of Retinitis Pigmentosa. Molecular Therapy, 2011, 19, 1602-1608.	8.2	98
20	Vertebrate Cone Opsins Enable Sustained and Highly Sensitive Rapid Control of G i/o Signaling in Anxiety Circuitry. Neuron, 2014, 81, 1263-1273.	8.1	96
21	Advancing Therapeutic Strategies for Inherited Retinal Degeneration: Recommendations From the Monaciano Symposium. Investigative Ophthalmology and Visual Science, 2015, 56, 918-931.	3.3	92
22	Restoration of visual function by transplantation of optogenetically engineered photoreceptors. Nature Communications, 2019, 10, 4524.	12.8	92
23	Early and late stage gene therapy interventions for inherited retinal degenerations. Progress in Retinal and Eye Research, 2022, 86, 100975.	15.5	85
24	Retinoschisin gene therapy in photoreceptors, Müller glia or all retinal cells in the Rs1hâ^'/â^' mouse. Gene Therapy, 2014, 21, 585-592.	4.5	76
25	Linking YAP to Müller Glia Quiescence Exit in the Degenerative Retina. Cell Reports, 2019, 27, 1712-1725.e6.	6.4	75
26	The primate model for understanding and restoring vision. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26280-26287.	7.1	73
27	In vivo–directed evolution of adeno-associated virus in the primate retina. JCI Insight, 2020, 5, .	5.0	71
28	Neural circuits in the mouse retina support color vision in the upper visual field. Nature Communications, 2020, 11, 3481.	12.8	70
29	Enhanced gene delivery to the neonatal retina through systemic administration of tyrosine-mutated AAV9. Gene Therapy, 2012, 19, 176-181.	4.5	69
30	Optogenetic therapy: high spatiotemporal resolution and pattern discrimination compatible with vision restoration in non-human primates. Communications Biology, 2021, 4, 125.	4.4	65
31	Suppression of cervical carcinoma cell growth by intracytoplasmic codelivery of anti-oncoprotein E6 antibody and small interfering RNA. Molecular Cancer Therapeutics, 2007, 6, 1728-1735.	4.1	60
32	Melanopsin Variants as Intrinsic Optogenetic On and Off Switches for Transient versus Sustained Activation of G Protein Pathways. Current Biology, 2016, 26, 1206-1212.	3.9	60
33	Spinocerebellar Ataxia Type 6 Protein Aggregates Cause Deficits in Motor Learning and Cerebellar Plasticity. Journal of Neuroscience, 2015, 35, 8882-8895.	3.6	59
34	Intracytoplasmic delivery of anionic proteins. Molecular Therapy, 2004, 9, 964-969.	8.2	57
35	Insight into the mechanisms of enhanced retinal transduction by the engineered AAV2 capsid variant $\hat{a} \in 7$ m8. Biotechnology and Bioengineering, 2016, 113, 2712-2724.	3.3	57
36	Dosage Thresholds and Influence of Transgene Cassette in Adeno-Associated Virus–Related Toxicity. Human Gene Therapy, 2018, 29, 1235-1241.	2.7	56

#	Article	IF	CITATIONS
37	Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Translational Vision Science and Technology, 2020, 9, 2.	2.2	56
38	Changes in Adeno-Associated Virus-Mediated Gene Delivery in Retinal Degeneration. Human Gene Therapy, 2010, 21, 571-578.	2.7	55
39	<i>In vivo</i> sub-millisecond two-photon optogenetics with temporally focused patterned light. Journal of Neuroscience, 2019, 39, 1785-18.	3.6	53
40	Nicotine inhibits the VTA-to-amygdala dopamine pathway to promote anxiety. Neuron, 2021, 109, 2604-2615.e9.	8.1	53
41	Gene therapy for inherited retinal degenerations. Comptes Rendus - Biologies, 2014, 337, 185-192.	0.2	52
42	AAV-Mediated Gene Delivery to 3D Retinal Organoids Derived from Human Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2020, 21, 994.	4.1	51
43	Genotypic and Phenotypic Characterization of P23H Line 1 Rat Model. PLoS ONE, 2015, 10, e0127319.	2.5	51
44	Imaging Light Responses of Foveal Ganglion Cells in the Living Macaque Eye. Journal of Neuroscience, 2014, 34, 6596-6605.	3.6	48
45	Optogenetic Light Sensors in Human Retinal Organoids. Frontiers in Neuroscience, 2018, 12, 789.	2.8	48
46	Cationic Oligonucleotideâ^'Peptide Conjugates with Aggregating Properties Enter Efficiently into Cells while Maintaining Hybridization Properties and Enzymatic Recognition. Journal of the American Chemical Society, 2006, 128, 10763-10771.	13.7	46
47	Neuronal Nogo-A upregulation does not contribute to ER stress-associated apoptosis but participates in the axotomized adult retina. Cell Death and Differentiation, 2012, 19, 1096-1108.	11.2	45
48	Vectors and Gene Delivery to the Retina. Annual Review of Vision Science, 2017, 3, 121-140.	4.4	45
49	AAVâ€mediated gene delivery in Dp71â€null mouse model with compromised barriers. Glia, 2014, 62, 468-476.	4.9	40
50	The Thioredoxin Encoded by the Rod-Derived Cone Viability Factor Gene Protects Cone Photoreceptors Against Oxidative Stress. Antioxidants and Redox Signaling, 2016, 24, 909-923.	5.4	38
51	Cell type-specific Nogo-A gene ablation promotes axonal regeneration in the injured adult optic nerve. Cell Death and Differentiation, 2015, 22, 323-335.	11.2	35
52	Non-viral delivery of chemically modified mRNA to the retina: Subretinal versus intravitreal administration. Journal of Controlled Release, 2019, 307, 315-330.	9.9	32
53	Intracellular protein delivery with a dimerizable amphiphile for improved complex stability and prolonged protein release in the cytoplasm of adherent cell lines. Journal of Controlled Release, 2006, 116, 353-359.	9.9	31
54	Systemic scAAV9 variant mediates brain transduction in newborn rhesus macaques. Scientific Reports, 2012, 2, 253.	3.3	29

#	Article	IF	CITATIONS
55	Loss of CRB2 in Müller glial cells modifies a CRB1-associated retinitis pigmentosa phenotype into a Leber congenital amaurosis phenotype. Human Molecular Genetics, 2019, 28, 105-123.	2.9	29
56	Systemic and local immune responses to intraocular AAV vector administration in non-human primates. Molecular Therapy - Methods and Clinical Development, 2022, 24, 306-316.	4.1	25
57	Opsins for vision restoration. Biochemical and Biophysical Research Communications, 2020, 527, 325-330.	2.1	22
58	Functional rescue of cone photoreceptors in retinitis pigmentosa. Graefe's Archive for Clinical and Experimental Ophthalmology, 2013, 251, 1669-1677.	1.9	21
59	AAV-mediated gene therapy in Dystrophin-Dp71 deficient mouse leads to blood-retinal barrier restoration and oedema reabsorption. Human Molecular Genetics, 2016, 25, ddw159.	2.9	20
60	Towards optogenetic vision restoration with high resolution. PLoS Computational Biology, 2020, 16, e1007857.	3.2	20
61	Assessing Photoreceptor Status in Retinal Dystrophies: From High-Resolution Imaging to Functional Vision. American Journal of Ophthalmology, 2021, 230, 12-47.	3.3	19
62	Chronic nicotine increases midbrain dopamine neuron activity and biases individual strategies towards reduced exploration in mice. Nature Communications, 2021, 12, 6945.	12.8	17
63	Gene therapy for the eye focus on mutation-independent approaches. Current Opinion in Neurology, 2015, 28, 51-60.	3.6	16
64	The temporal structure of the inner retina at a single glance. Scientific Reports, 2020, 10, 4399.	3.3	14
65	Gene therapy for retinal dystrophy. Nature Medicine, 2019, 25, 198-199.	30.7	13
66	Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Frontiers in Genome Editing, 2021, 3, 737632.	5.2	13
67	Sphingosine 1-Phosphate Receptor 1 Modulates CNTF-Induced Axonal Growth and Neuroprotection in the Mouse Visual System. Neural Plasticity, 2017, 2017, 1-11.	2.2	11
68	Neutralizing Antibodies Against Adeno-Associated Virus (AAV): Measurement and Influence on Retinal Gene Delivery. Methods in Molecular Biology, 2018, 1715, 225-238.	0.9	11
69	Control of Microbial Opsin Expression in Stem Cell Derived Cones for Improved Outcomes in Cell Therapy. Frontiers in Cellular Neuroscience, 2021, 15, 648210.	3.7	10
70	Restoration of mGluR6 Localization Following AAV-Mediated Delivery in a Mouse Model of Congenital Stationary Night Blindness. , 2021, 62, 24.		10
71	Substantial restoration of night vision in adult mice with congenital stationary night blindness. Molecular Therapy - Methods and Clinical Development, 2021, 22, 15-25.	4.1	10
72	268. Optogenetic Engineering of Retinal Ganglion Cells with AAV2.7m8-ChrimsonR-tdTomato (GS030-DP) Is Well Tolerated and Induces Functional Responses to Light in Non-Human Primates. Molecular Therapy, 2016, 24, S106-S107.	8.2	9

#	Article	IF	CITATIONS
73	Rescue of Defective Electroretinographic Responses in Dp71-Null Mice With AAV-Mediated Reexpression of Dp71. , 2020, 61, 11.		9
74	New Editing Tools for Gene Therapy in Inherited Retinal Dystrophies. CRISPR Journal, 2022, 5, 377-388.	2.9	9
75	Intracisternal delivery of NFκB-inducible scAAV2/9 reveals locoregional neuroinflammation induced by systemic kainic acid treatment. Frontiers in Molecular Neuroscience, 2014, 7, 92.	2.9	7
76	The metabolic signaling of the nucleoredoxin-like 2 gene supports brain function. Redox Biology, 2021, 48, 102198.	9.0	7
77	Using Adeno-associated Virus as a Tool to Study Retinal Barriers in Disease. Journal of Visualized Experiments, 2015, , .	0.3	6
78	AAV-Mediated Gene to Foveal Cones. Methods in Molecular Biology, 2020, 2173, 101-112.	0.9	5
79	Outer retinal transduction by AAV2-7m8 following intravitreal injection in a sheep model of CNGA3 achromatopsia. Gene Therapy, 2021, , .	4.5	2
80	Design, Synthesis and Evaluation of a Novel Polymer for Gene Delivery to Mammalian Cells. Letters in Drug Design and Discovery, 2007, 4, 92-98.	0.7	1
81	Adeno-Associated Viral Vectors for Gene Therapy. Laboratory Techniques in Biochemistry and Molecular Biology / Edited By T S Work [and] E Work, 2005, , .	0.2	1
82	Gene Therapy for Vision Disorders. , 2015, , 935-948.		1
83	Boosting the success of retinal gene therapy. Science Translational Medicine, 2015, 7, .	12.4	0