Marta Perez-Gussinye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9148653/publications.pdf

Version: 2024-02-01

218677 330143 2,676 37 26 37 citations h-index g-index papers 37 37 37 1997 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Rift migration explains continental margin asymmetry and crustal hyper-extension. Nature Communications, 2014, 5, 4014.	12.8	272
2	Rheological evolution during extension at nonvolcanic rifted margins: Onset of serpentinization and development of detachments leading to continental breakup. Journal of Geophysical Research, 2001, 106, 3961-3975.	3 . 3	264
3	Sequential faulting explains the asymmetry and extension discrepancy of conjugate margins. Nature, 2010, 468, 294-299.	27.8	192
4	The long-term strength of Europe and its implications for plate-forming processes. Nature, 2005, 436, 381-384.	27.8	143
5	Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics. Earth and Planetary Science Letters, 2009, 287, 152-167.	4.4	142
6	The role of crustal quartz in controlling Cordilleran deformation. Nature, 2011, 471, 353-357.	27.8	141
7	Chilean flat slab subduction controlled by overriding plate thickness and trench rollback. Geology, 2012, 40, 35-38.	4.4	139
8	Rifted margin architecture and crustal rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Marine and Petroleum Geology, 2017, 79, 257-281.	3.3	138
9	Mechanisms of extension at nonvolcanic margins: Evidence from the Galicia interior basin, west of Iberia. Journal of Geophysical Research, 2003, 108, .	3.3	133
10	The rift to drift transition at non-volcanic margins: Insights from numerical modelling. Earth and Planetary Science Letters, 2006, 244, 458-473.	4.4	111
11	On the recovery of effective elastic thickness using spectral methods: Examples from synthetic data and from the Fennoscandian Shield. Journal of Geophysical Research, 2004, 109, .	3.3	101
12	Effective elastic thickness of South America and its implications for intracontinental deformation. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	100
13	Detachment faulting, mantle serpentinization, and serpentinite- mud volcanism beneath the Porcupine Basin, southwest of Ireland. Geology, 2001, 29, 587.	4.4	77
14	Fault-controlled hydration of the upper mantle during continentalÂrifting. Nature Geoscience, 2016, 9, 384-388.	12.9	75
15	Effective elastic thickness variations along the Andean margin and their relationship to subduction geometry. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	69
16	Lithospheric extension from rifting to continental breakup at magma-poor margins: rheology, serpentinisation and symmetry. International Journal of Earth Sciences, 2007, 96, 1033-1046.	1.8	50
17	Serpentinization and magmatism during extension at non-volcanic margins: the effect of initial lithospheric structure. Geological Society Special Publication, 2001, 187, 551-576.	1.3	47
18	Spatial variations of the effective elastic thickness, <i>T</i> _{<i>e</i>} , using multitaper spectral estimation and wavelet methods: Examples from synthetic data and application to South America. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	47

#	Article	IF	Citations
19	A tectonic model for hyperextension at magma-poor rifted margins: an example from the West Iberia–Newfoundland conjugate margins. Geological Society Special Publication, 2013, 369, 403-427.	1.3	46
20	Thermomechanical Implications of Sediment Transport for the Architecture and Evolution of Continental Rifts and Margins. Tectonics, 2019, 38, 641-665.	2.8	42
21	Lower Crustal Strength Controls on Melting and Serpentinization at Magmaâ€Poor Margins: Potential Implications for the South Atlantic. Geochemistry, Geophysics, Geosystems, 2017, 18, 4538-4557.	2.5	41
22	Interrelation between rifting, faulting, sedimentation, and mantle serpentinization during continental margin formationâ€"including examples from the Norwegian Sea. Geochemistry, Geophysics, Geosystems, 2013, 14, 4351-4369.	2.5	35
23	Lithospheric Strength and Rift Migration Controls on Synrift Stratigraphy and Breakup Unconformities at Rifted Margins: Examples From Numerical Models, the Atlantic and South China Sea Margins. Tectonics, 2020, 39, e2020TC006255.	2.8	33
24	Decoupled crust-mantle accommodation of Africa-Eurasia convergence in the NW Moroccan margin. Journal of Geophysical Research, 2011, 116, .	3.3	30
25	Spatial variations of effective elastic thickness of the lithosphere in Central America and surrounding regions. Earth and Planetary Science Letters, 2014, 391, 55-66.	4.4	29
26	Multitaper spectral method to estimate the elastic thickness ofÂSouthÂChina: Implications for intracontinental deformation. Geoscience Frontiers, 2014, 5, 193-203.	8.4	28
27	The continental extension discrepancy and anomalous subsidence pattern in the western Qiongdongnan Basin, South China Sea. Earth and Planetary Science Letters, 2018, 501, 180-191.	4.4	28
28	Slip along the Sultanhanı Fault in Central Anatolia from deformed Pleistocene shorelines of palaeo-lake Konya and implications for seismic hazards in low-strain regions. Geophysical Journal International, 2017, 209, 1431-1454.	2.4	17
29	Causes and consequences of asymmetric lateral plume flow during South Atlantic rifting. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27877-27883.	7.1	17
30	A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests. Physics of the Earth and Planetary Interiors, 2015, 246, 41-51.	1.9	16
31	Serpentinization-Driven H2 Production From Continental Break-Up to Mid-Ocean Ridge Spreading: Unexpected High Rates at the West Iberia Margin. Frontiers in Earth Science, 2021, 9, .	1.8	15
32	Geometry of extensional faults developed at slow-spreading centres from pre-stack depth migration of seismic reflection data in the Central Atlantic (Canary Basin). Geophysical Journal International, 2004, 159, 591-606.	2.4	14
33	Global Whole Lithosphere Isostasy: Implications for Surface Elevations, Structure, Strength, and Densities of the Continental Lithosphere. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009150.	2.5	12
34	Lateral coexistence of ductile and brittle deformation shapes magma-poor distal margins: An example from the West Iberia-Newfoundland margins. Earth and Planetary Science Letters, 2022, 578, 117288.	4.4	12
35	The Role of Crustal Strength in Controlling Magmatism and Melt Chemistry During Rifting and Breakup. Geochemistry, Geophysics, Geosystems, 2018, 19, 534-550.	2.5	11
36	Oceanward rift migration during formation of Santos–Benguela ultra-wide rifted margins. Geological Society Special Publication, 2023, 524, 65-91.	1.3	5

#	Article	IF	CITATIONS
37	KineDyn: Thermomechanical forward method for validation of seismic interpretations and investigation of dynamics of rifts and rifted margins. Physics of the Earth and Planetary Interiors, 2021, 317, 106748.	1.9	4