
Dongsheng Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9148622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational engineering of a functional CpG-free ITR for AAV gene therapy. Gene Therapy, 2022, 29, 333-345.	4.5	23
2	Exercise-Induced Improvement in Insulin-Stimulated Glucose Uptake by Rat Skeletal Muscle Is Absent in Male AS160-Knockout Rats, Partially Restored by Muscle Expression of Phosphomutated AS160, and Fully Restored by Muscle Expression of Wild-Type AS160. Diabetes, 2022, 71, 219-232.	0.6	10
3	Four-limb wireless IMU sensor system for automatic gait detection in canines. Scientific Reports, 2022, 12, 4788.	3.3	7
4	The gRNA Vector Level Determines the Outcome of Systemic AAV CRISPR Therapy for Duchenne Muscular Dystrophy. Human Gene Therapy, 2022, 33, 518-528.	2.7	5
5	Letter by Duan et al Regarding Article, "Therapeutic Exon Skipping Through a CRISPR-Guided Cytidine Deaminase Rescues Dystrophic Cardiomyopathy In Vivo― Circulation, 2022, 145, e872-e873.	1.6	0
6	Widespread severe myodegeneration in a compound heterozygote female dog with dystrophin deficiency. Veterinary Medicine and Science, 2021, 7, 654-659.	1.6	1
7	Duchenne muscular dystrophy. Nature Reviews Disease Primers, 2021, 7, 13.	30.5	448
8	Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. Frontiers in Physiology, 2021, 12, 647010.	2.8	60
9	Ventricular Dysfunction and Calcium Handling Derangements in Isolated Hearts From Duchenne Muscular Dystrophy (DMD ^{mdxâ€4CV}) Mice Following Sustained Ventricular Preload. FASEB Journal, 2021, 35, .	0.5	0
10	Proteomic analysis identifies key differences in the cardiac interactomes of dystrophin and micro-dystrophin. Human Molecular Genetics, 2021, 30, 1321-1336.	2.9	10
11	Dystrophin deficiency impairs vascular structure and function in the canine model of <scp>Duchenne</scp> muscular dystrophy. Journal of Pathology, 2021, 254, 589-605.	4.5	15
12	A Cautiously Optimistic Outlook of a Designer Therapy for 1% of Duchenne Muscular Dystrophy Patients. Human Gene Therapy, 2021, 32, 872-874.	2.7	0
13	Extensor carpi ulnaris muscle shows unexpected slow-to-fast fiber type switch in Duchenne muscular dystrophy dogs. DMM Disease Models and Mechanisms, 2021, , .	2.4	6
14	Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models. Nature Communications, 2021, 12, 6769.	12.8	73
15	Single SERCA2a Therapy Ameliorated Dilated Cardiomyopathy for 18 Months in a Mouse Model of Duchenne Muscular Dystrophy. Molecular Therapy, 2020, 28, 845-854.	8.2	29
16	High-resolution 3D tractography of fibrous tissue based on polarization-sensitive optical coherence tomography. Experimental Biology and Medicine, 2020, 245, 273-281.	2.4	11
17	Sensitive and reliable evaluation of single-cut sgRNAs to restore dystrophin by a GFP-reporter assay. PLoS ONE, 2020, 15, e0239468.	2.5	8
18	Micro-dystrophin AAV Vectors Made by Transient Transfection and Herpesvirus System Are Equally Potent in Treating mdx Mouse Muscle Disease. Molecular Therapy - Methods and Clinical Development, 2020, 18, 664-678.	4.1	10

#	Article	IF	CITATIONS
19	High-Resolution Histological Landscape of AAV DNA Distribution in Cellular Compartments and Tissues following Local and Systemic Injection. Molecular Therapy - Methods and Clinical Development, 2020, 18, 856-868.	4.1	22
20	Laying the Foundation for Neuromuscular Disease Gene Therapy. Human Gene Therapy, 2020, 31, 785-786.	2.7	0
21	High prevalence of plasma lipid abnormalities in human and canine Duchenne and Becker muscular dystrophies depicts a new type of primary genetic dyslipidemia. Journal of Clinical Lipidology, 2020, 14, 459-469.e0.	1.5	18
22	Canine Models of Inherited Musculoskeletal and Neurodegenerative Diseases. Frontiers in Veterinary Science, 2020, 7, 80.	2.2	14
23	Duchenne muscular dystrophy animal models for high-throughput drug discovery and precision medicine. Expert Opinion on Drug Discovery, 2020, 15, 443-456.	5.0	21
24	Late-life restoration of mitochondrial function reverses cardiac dysfunction in old mice. ELife, 2020, 9, .	6.0	68
25	Temporal dynamics of muscle optical properties during degeneration and regeneration in a canine muscle xenograft model. Biomedical Optics Express, 2020, 11, 2383.	2.9	Ο
26	Sarcolipin overexpression impairs myogenic differentiation in Duchenne muscular dystrophy. American Journal of Physiology - Cell Physiology, 2019, 317, C813-C824.	4.6	16
27	AAV9 Edits Muscle Stem Cells in Normal and Dystrophic Adult Mice. Molecular Therapy, 2019, 27, 1568-1585.	8.2	54
28	Dystrophin R16/17 protein therapy restores sarcolemmal nNOS in trans and improves muscle perfusion and function. Molecular Medicine, 2019, 25, 31.	4.4	14
29	Micro-utrophin Therapy for Duchenne Muscular Dystrophy. Molecular Therapy, 2019, 27, 1872-1874.	8.2	11
30	Systemic Delivery of Adeno-Associated Viral Vectors in Mice and Dogs. Methods in Molecular Biology, 2019, 1937, 281-294.	0.9	5
31	An Engineered Galactosylceramidase Construct Improves AAV Gene Therapy for Krabbe Disease in Twitcher Mice. Human Gene Therapy, 2019, 30, 1039-1051.	2.7	24
32	Design of Muscle Gene Therapy Expression Cassette. , 2019, , 141-156.		1
33	Unified energetics analysis unravels SpCas9 cleavage activity for optimal gRNA design. Proceedings of the United States of America, 2019, 116, 8693-8698.	7.1	46
34	Development of Next-Generation Muscle Gene Therapy AAV Vectors. , 2019, , 193-206.		0
35	Design of AAV Vectors for Delivery of Large or Multiple Transgenes. Methods in Molecular Biology, 2019, 1950, 19-33.	0.9	37
36	An improved method for studying mouse diaphragm function. Scientific Reports, 2019, 9, 19453.	3.3	14

#	Article	IF	CITATIONS
37	Questions Answered and Unanswered by the First CRISPR Editing Study in a Canine Model of Duchenne Muscular Dystrophy. Human Gene Therapy, 2019, 30, 535-543.	2.7	12
38	Considerations on Preclinical Neuromuscular Disease Gene Therapy Studies. , 2019, , 291-326.		1
39	Cover Image, Volume 10, Issue 2. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1514.	6.1	0
40	Micro-Dystrophin Gene Therapy Goes Systemic in Duchenne Muscular Dystrophy Patients. Human Gene Therapy, 2018, 29, 733-736.	2.7	72
41	Cardiac-Specific Expression of ΔH2-R15 Mini-Dystrophin Normalized All Electrocardiogram Abnormalities and the End-Diastolic Volume in a 23-Month-Old Mouse Model of Duchenne Dilated Cardiomyopathy. Human Gene Therapy, 2018, 29, 737-748.	2.7	17
42	Automatic quantification of microscopic heart damage in a mouse model of Duchenne muscular dystrophy using optical polarization tractography. Journal of Biophotonics, 2018, 11, e201700284.	2.3	5
43	Variable rescue of microtubule and physiological phenotypes in mdx muscle expressing different miniaturized dystrophins. Human Molecular Genetics, 2018, 27, 2090-2100.	2.9	44
44	Nanotherapy for Duchenne muscular dystrophy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1472.	6.1	22
45	Dual AAV Gene Therapy for Duchenne Muscular Dystrophy with a 7-kb <i>Mini-Dystrophin</i> Gene in the Canine Model. Human Gene Therapy, 2018, 29, 299-311.	2.7	55
46	AAV CRISPR editing rescues cardiac and muscle function for 18 months in dystrophic mice. JCI Insight, 2018, 3, .	5.0	79
47	Dystrophin R16/17-syntrophin PDZ fusion protein restores sarcolemmal nNOSμ. Skeletal Muscle, 2018, 8, 36.	4.2	7
48	CRISPR alleviates muscular dystrophy in dogs. Nature Biomedical Engineering, 2018, 2, 795-796.	22.5	6
49	Nitric oxideâ€dependent attenuation of noradrenalineâ€induced vasoconstriction is impaired in the canine model of Duchenne muscular dystrophy. Journal of Physiology, 2018, 596, 5199-5216.	2.9	11
50	Gene Therapy: Use of Viruses as Vectors. , 2018, , .		2
51	Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Molecular Therapy, 2018, 26, 2337-2356.	8.2	306
52	Expressing Full-Length Dystrophin Using Adeno-Associated Virus. , 2018, , 259-276.		0
53	Automatic characterization of stride parameters in canines with a single wearable inertial sensor. PLoS ONE, 2018, 13, e0198893.	2.5	14
54	High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography. Journal of Biophotonics, 2017, 10, 231-241.	2.3	28

#	Article	IF	CITATIONS
55	Uniform low-level dystrophin expression in the heart partially preserved cardiac function in an aged mouse model of Duchenne cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2017, 102, 45-52.	1.9	16
56	A New Kid on the Playground of CRISPR DMD Therapy. Human Gene Therapy Clinical Development, 2017, 28, 62-64.	3.1	2
57	CRISPR-Cas9 cleavage efficiency correlates strongly with target-sgRNA folding stability: from physical mechanism to off-target assessment. Scientific Reports, 2017, 7, 143.	3.3	59
58	Reducing sarcolipin expression mitigates Duchenne muscular dystrophy and associated cardiomyopathy in mice. Nature Communications, 2017, 8, 1068.	12.8	83
59	A Five-Repeat Micro-Dystrophin Gene Ameliorated Dystrophic Phenotype in the Severe DBA/2J-mdx Model of Duchenne Muscular Dystrophy. Molecular Therapy - Methods and Clinical Development, 2017, 6, 216-230.	4.1	78
60	Non-invasive evaluation of muscle disease in the canine model of Duchenne muscular dystrophy by electrical impedance myography. PLoS ONE, 2017, 12, e0173557.	2.5	12
61	100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16045.	4.1	9
62	499. Intravenous Delivery of a Novel Micro-Dystrophin Vector Prevented Muscle Deterioration in Young Adult Canine Duchenne Muscular Dystrophy Dogs. Molecular Therapy, 2016, 24, S198-S199.	8.2	6
63	Genomic removal of a therapeutic mini-dystrophin gene from adult mice elicits a Duchenne muscular dystrophy-like phenotype. Human Molecular Genetics, 2016, 25, ddw123.	2.9	13
64	A One Health overview, facilitating advances in comparative medicine and translational research. Clinical and Translational Medicine, 2016, 5, 26.	4.0	16
65	Systemic delivery of adeno-associated viral vectors. Current Opinion in Virology, 2016, 21, 16-25.	5.4	87
66	Dystrophin contains multiple independent membrane-binding domains. Human Molecular Genetics, 2016, 25, 3647-3653.	2.9	44
67	Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography. Journal of Biomedical Optics, 2016, 21, 116004.	2.6	11
68	Standard Operating Procedures (SOPs) for Evaluating the Heart in Preclinical Studies of Duchenne Muscular Dystrophy. Journal of Cardiovascular Translational Research, 2016, 9, 85-86.	2.4	15
69	Optical polarization tractography based on polarization-sensitive optical coherence tomography. Proceedings of SPIE, 2016, , .	0.8	0
70	Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy. Expert Opinion on Orphan Drugs, 2016, 4, 169-183.	0.8	13
71	In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 2016, 351, 403-407.	12.6	957
72	Night Activity Reduction is a Signature Physiological Biomarker for Duchenne Muscular Dystrophy Dogs. Journal of Neuromuscular Diseases, 2015, 2, 397-407.	2.6	5

#	Article	IF	CITATIONS
73	Perspectives on Best Practices for Gene Therapy Programs. Human Gene Therapy, 2015, 26, 127-133.	2.7	14
74	AAV-8 Is More Efficient than AAV-9 in Transducing Neonatal Dog Heart. Human Gene Therapy Methods, 2015, 26, 54-61.	2.1	20
75	Early loss of ambulation is not a representative clinical feature in Duchenne muscular dystrophy dogs: remarks on the article of Barthélémy et al DMM Disease Models and Mechanisms, 2015, 8, 193-194.	2.4	6
76	Duchenne muscular dystrophy gene therapy in the canine model. Human Gene Therapy Clinical Development, 2015, , 150127063140004.	3.1	2
77	Duchenne Muscular Dystrophy Gene Therapy in the Canine Model. Human Gene Therapy Clinical Development, 2015, 26, 57-69.	3.1	57
78	Contemporary Cardiac Issues in Duchenne Muscular Dystrophy. Circulation, 2015, 131, 1590-1598.	1.6	240
79	Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy. Human Gene Therapy, 2015, 26, 786-800.	2.7	44
80	Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Human Molecular Genetics, 2015, 24, 5880-5890.	2.9	104
81	Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. DMM Disease Models and Mechanisms, 2015, 8, 195-213.	2.4	376
82	The FVB Background Does Not Dramatically Alter the Dystrophic Phenotype of Mdx Mice. PLOS Currents, 2015, 7, .	1.4	7
83	Systemic gene transfer reveals distinctive muscle transduction profile of tyrosine mutant AAV-1, -6, and -9 in neonatal dogs. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14002.	4.1	25
84	Characterization of 65 Epitope-Specific Dystrophin Monoclonal Antibodies in Canine and Murine Models of Duchenne Muscular Dystrophy by Immunostaining and Western Blot. PLoS ONE, 2014, 9, e88280.	2.5	19
85	Full-Length Dystrophin Reconstitution with Adeno-Associated Viral Vectors. Human Gene Therapy, 2014, 25, 552-562.	2.7	59
86	Partial restoration of cardiac function with ÂPDZ nNOS in aged mdx model of Duchenne cardiomyopathy. Human Molecular Genetics, 2014, 23, 3189-3199.	2.9	32
87	Mitochondria-Targeted Antiaging Gene Therapy with Adeno-associated Viral Vectors. Methods in Molecular Biology, 2013, 1048, 161-180.	0.9	4
88	Long-Term Robust Myocardial Transduction of the Dog Heart from a Peripheral Vein by Adeno-Associated Virus Serotype-8. Human Gene Therapy, 2013, 24, 584-594.	2.7	27
89	Microdystrophin Ameliorates Muscular Dystrophy in the Canine Model of Duchenne Muscular Dystrophy. Molecular Therapy, 2013, 21, 750-757.	8.2	114
90	Evaluation of Muscle Function of the Extensor Digitorum Longus Muscle Ex vivo and Tibialis Anterior Muscle In situ in Mice. Journal of Visualized Experiments, 2013, , .	0.3	57

#	Article	IF	CITATIONS
91	Alpha 7 integrin preserves the function of the extensor digitorum longus muscle in dystrophin-null mice. Journal of Applied Physiology, 2013, 115, 1388-1392.	2.5	11
92	Exclusive skeletal muscle correction does not modulate dystrophic heart disease in the aged mdx model of Duchenne cardiomyopathy. Human Molecular Genetics, 2013, 22, 2634-2641.	2.9	34
93	Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy. Human Molecular Genetics, 2013, 22, 3720-3729.	2.9	67
94	Truncated dystrophins reduce muscle stiffness in the extensor digitorum longus muscle of mdx mice. Journal of Applied Physiology, 2013, 114, 482-489.	2.5	12
95	α2 and α3 helices of dystrophin R16 and R17 frame a microdomain in the α1 helix of dystrophin R17 for neuronal NOS binding. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 525-530.	7.1	87
96	Quantitative Phenotyping of Duchenne Muscular Dystrophy Dogs by Comprehensive Gait Analysis and Overnight Activity Monitoring. PLoS ONE, 2013, 8, e59875.	2.5	22
97	A Simplified Immune Suppression Scheme Leads to Persistent Micro-dystrophin Expression in Duchenne Muscular Dystrophy Dogs. Human Gene Therapy, 2012, 23, 202-209.	2.7	48
98	Humoral Immunity to AAV-6, 8, and 9 in Normal and Dystrophic Dogs. Human Gene Therapy, 2012, 23, 287-294.	2.7	36
99	A marginal level of dystrophin partially ameliorates hindlimb muscle passive mechanical properties in dystrophinâ€null mice. Muscle and Nerve, 2012, 46, 943-947.	2.2	10
100	Novel Mini–Dystrophin Gene Dual Adeno-Associated Virus Vectors Restore Neuronal Nitric Oxide Synthase Expression at the Sarcolemma. Human Gene Therapy, 2012, 23, 98-103.	2.7	77
101	AAV micro-dystrophin gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in > 21-m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2012, 53, 217-222.	1.9	62
102	Recombinant Adeno-Associated Viral Vector Production and Purification. Methods in Molecular Biology, 2012, 798, 267-284.	0.9	36
103	Reply to Head. Journal of Applied Physiology, 2012, 112, 332-332.	2.5	Ο
104	Gender differences in contractile and passive properties of <i>mdx</i> extensor digitorum longus muscle. Muscle and Nerve, 2012, 45, 250-256.	2.2	29
105	Dystrophin Deficiency Compromises Force Production of the Extensor Carpi Ulnaris Muscle in the Canine Model of Duchenne Muscular Dystrophy. PLoS ONE, 2012, 7, e44438.	2.5	25
106	Impaired muscular force production in a canine model of muscular dystrophin deficiency. FASEB Journal, 2012, 26, lb727.	0.5	0
107	Efficient Transgene Reconstitution with Hybrid Dual AAV Vectors Carrying the Minimized Bridging Sequences. Human Gene Therapy, 2011, 22, 77-83.	2.7	77
108	Age-matched comparison reveals early electrocardiography and echocardiography changes in dystrophin-deficient dogs. Neuromuscular Disorders, 2011, 21, 453-461.	0.6	41

#	Article	IF	CITATIONS
109	Duchenne muscular dystrophy gene therapy: Lost in translation?. Research and Reports in Biology, 2011, 2011, 31.	0.2	45
110	An intronic LINE-1 element insertion in the dystrophin gene aborts dystrophin expression and results in Duchenne-like muscular dystrophy in the corgi breed. Laboratory Investigation, 2011, 91, 216-231.	3.7	79
111	SERCA2a gene transfer improves electrocardiographic performance in aged mdx mice. Journal of Translational Medicine, 2011, 9, 132.	4.4	39
112	Nitrosative stress elicited by nNOSµ delocalization inhibits muscle force in dystrophinâ€null mice. Journal of Pathology, 2011, 223, 88-98.	4.5	80
113	Genotyping <i>mdx</i> , <i>mdx3cv</i> , and <i>mdx4cv</i> mice by primer competition polymerase chain reaction. Muscle and Nerve, 2011, 43, 283-286.	2.2	55
114	The evolution of heart gene delivery vectors. Journal of Gene Medicine, 2011, 13, 557-565.	2.8	47
115	Gene delivery to the heart: an updated review on vectors and methods. Journal of Gene Medicine, 2011, 13, 556-556.	2.8	2
116	Evidence for impaired neurovascular transmission in a murine model of Duchenne muscular dystrophy. Journal of Applied Physiology, 2011, 110, 601-609.	2.5	13
117	AAV-microdystrophin Therapy Improves Cardiac Performance in Aged Female mdx Mice. Molecular Therapy, 2011, 19, 1826-1832.	8.2	73
118	The passive mechanical properties of the extensor digitorum longus muscle are compromised in 2- to 20-mo-old mdx mice. Journal of Applied Physiology, 2011, 110, 1656-1663.	2.5	60
119	Whole Body Skeletal Muscle Transduction in Neonatal Dogs with AAV-9. Methods in Molecular Biology, 2011, 709, 313-329.	0.9	23
120	Monitoring Murine Skeletal Muscle Function for Muscle Gene Therapy. Methods in Molecular Biology, 2011, 709, 75-89.	0.9	52
121	Phenotyping Cardiac Gene Therapy in Mice. Methods in Molecular Biology, 2011, 709, 91-104.	0.9	21
122	iNOS Ablation Does Not Improve Specific Force of the Extensor Digitorum Longus Muscle in Dystrophin-Deficient mdx4cv Mice. PLoS ONE, 2011, 6, e21618.	2.5	17
123	Gender influences cardiac function in the <i>mdx</i> model of duchenne cardiomyopathy. Muscle and Nerve, 2010, 42, 600-603.	2.2	53
124	Sarcolemmal nNOS anchoring reveals a qualitative difference between dystrophin and utrophin. Journal of Cell Science, 2010, 123, 2008-2013.	2.0	80
125	Evidence for the Failure of Adeno-associated Virus Serotype 5 to Package a Viral Genome ≥8.2Âkb. Molecular Therapy, 2010, 18, 75-79.	8.2	152
126	Adeno-Associated Virus Serotype 6 Capsid Tyrosine-to-Phenylalanine Mutations Improve Gene Transfer to Skeletal Muscle. Human Gene Therapy, 2010, 21, 1343-1348.	2.7	72

#	Article	IF	CITATIONS
127	Delivering Large Therapeutic Genes for Muscle Gene Therapy. , 2010, , 205-218.		8
128	Duchenne Cardiomyopathy Gene Therapy. , 2010, , 141-162.		6
129	Adeno-Associated Virus Serotype-9 Mediated Retinal Outer Plexiform Layer Transduction is Mainly Through the Photoreceptors. Advances in Experimental Medicine and Biology, 2010, 664, 671-678.	1.6	11
130	Marginal Level Dystrophin Expression Improves Clinical Outcome in a Strain of Dystrophin/Utrophin Double Knockout Mice. PLoS ONE, 2010, 5, e15286.	2.5	49
131	Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. Journal of Clinical Investigation, 2009, 119, 624-635.	8.2	319
132	Sub-physiological sarcoglycan expression contributes to compensatory muscle protection in mdx mice. Human Molecular Genetics, 2009, 18, 1209-1220.	2.9	60
133	Systemic <i>Trans</i> -Splicing Adeno-Associated Viral Delivery Efficiently Transduces the Heart of Adult <i>mdx</i> Mouse, a Model for Duchenne Muscular Dystrophy. Human Gene Therapy, 2009, 20, 1319-1328.	2.7	40
134	Cardiac Expression of a Mini-dystrophin That Normalizes Skeletal Muscle Force Only Partially Restores Heart Function in Aged Mdx Mice. Molecular Therapy, 2009, 17, 253-261.	8.2	83
135	Ectopic Catalase Expression in Mitochondria by Adeno-Associated Virus Enhances Exercise Performance in Mice. PLoS ONE, 2009, 4, e6673.	2.5	27
136	Restoration of sarcolemmal nNOS is essential to normalize αâ€adrenoceptor control of muscle blood flow in transgenic mdx mice. FASEB Journal, 2009, 23, 776.3.	0.5	0
137	Adeno-associated virus serotype-9 efficiently transduces the retinal outer plexiform layer. Molecular Vision, 2009, 15, 1374-82.	1.1	20
138	Preservation of Muscle Force in Mdx3cv Mice Correlates with Low-Level Expression of a Near Full-Length Dystrophin Protein. American Journal of Pathology, 2008, 172, 1332-1341.	3.8	59
139	Dystrophin knockdown mice suggest that early, transient dystrophin expression might be enough to prevent later pathology. Neuromuscular Disorders, 2008, 18, 904-905.	0.6	1
140	Adeno-Associated Virus Serotype-9 Microdystrophin Gene Therapy Ameliorates Electrocardiographic Abnormalities in <i>mdx</i> Mice. Human Gene Therapy, 2008, 19, 851-856.	2.7	93
141	Prevention of Dystrophin-Deficient Cardiomyopathy in Twenty-One-Month-Old Carrier Mice by Mosaic Dystrophin Expression or Complementary Dystrophin/Utrophin Expression. Circulation Research, 2008, 102, 121-130.	4.5	107
142	A Hybrid Vector System Expands Adeno-associated Viral Vector Packaging Capacity in a Transgene-independent Manner. Molecular Therapy, 2008, 16, 124-130.	8.2	128
143	A Single Intravenous Injection of Adeno-associated Virus Serotype-9 Leads to Whole Body Skeletal Muscle Transduction in Dogs. Molecular Therapy, 2008, 16, 1944-1952.	8.2	158
144	Design of Trans-Splicing Adeno-Associated Viral Vectors for Duchenne Muscular Dystrophy Gene Therapy. Methods in Molecular Biology, 2008, 433, 259-276.	0.9	15

#	Article	IF	CITATIONS
145	Myodys, a full-length dystrophin plasmid vector for Duchenne and Becker muscular dystrophy gene therapy. Current Opinion in Molecular Therapeutics, 2008, 10, 86-94.	2.8	16
146	Efficient Whole-body Transduction with Trans-splicing Adeno-associated Viral Vectors. Molecular Therapy, 2007, 15, 750-755.	8.2	76
147	Expanding Adeno-associated Viral Vector Capacity: A Tale of Two Vectors. Biotechnology and Genetic Engineering Reviews, 2007, 24, 165-178.	6.2	48
148	Catalase overexpression does not impair extensor digitorum longus muscle function in normal mice. Muscle and Nerve, 2007, 36, 833-841.	2.2	3
149	Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration. Gene Therapy, 2007, 14, 1605-1609.	4.5	155
150	Viral serotype and the transgene sequence influence overlapping adeno-associated viral (AAV) vector-mediated gene transfer in skeletal muscle. Journal of Gene Medicine, 2006, 8, 298-305.	2.8	58
151	Challenges and opportunities in dystrophin-deficient cardiomyopathy gene therapy. Human Molecular Genetics, 2006, 15, R253-R261.	2.9	74
152	Synthetic Intron Improves Transduction Efficiency of Trans-Splicing Adeno-Associated Viral Vectors. Human Gene Therapy, 2006, 17, 1036-1042.	2.7	30
153	C-Terminal-Truncated Microdystrophin Recruits Dystrobrevin and Syntrophin to the Dystrophin-Associated Glycoprotein Complex and Reduces Muscular Dystrophy in Symptomatic Utrophin/Dystrophin Double-Knockout Mice. Molecular Therapy, 2006, 14, 79-87.	8.2	67
154	Brief Report: Synthetic Intron Improves Transduction Efficiency ofTrans-Splicing Adeno-associated Viral Vectors. Human Gene Therapy, 2006, 17, 060928063342004.	2.7	18
155	From the smallest virus to the biggest gene: marching towards gene therapy for duchenne muscular dystrophy. Discovery Medicine, 2006, 6, 103-8.	0.5	17
156	Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nature Biotechnology, 2005, 23, 1435-1439.	17.5	189
157	Adeno-Associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury. Molecular Therapy, 2005, 11, 245-256.	8.2	163
158	Mechanism of recombinant adeno-associated virus transduction. , 2005, , 511-524.		0
159	Trans-Splicing Adeno-Associated Viral Vector-Mediated Gene Therapy Is Limited by the Accumulation of Spliced mRNA but Not by Dual Vector Coinfection Efficiency. Human Gene Therapy, 2004, 15, 896-905.	2.7	47
160	Full-length dystrophin expression in half of the heart cells ameliorates Â-isoproterenol-induced cardiomyopathy in mdx mice. Human Molecular Genetics, 2004, 13, 1669-1675.	2.9	60
161	<i>Trans</i> -Splicing Adeno-Associated Viral Vector-Mediated Gene Therapy Is Limited by the Accumulation of Spliced mRNA but Not by Dual Vector Coinfection Efficiency. Human Gene Therapy, 2004, 15, 896-905.	2.7	2
162	Dual Vector Expansion of the Recombinant AAV Packaging Capacity. , 2003, 219, 29-52.		19

10

#	Article	IF	CITATIONS
163	Trans-Splicing Vectors Expand the Packaging Limits of Adeno-Associated Virus for Gene Therapy Applications. , 2003, 76, 287-308.		11
164	Double strand interaction is the predominant pathway for intermolecular recombination of adeno-associated viral genomes. Virology, 2003, 313, 1-7.	2.4	24
165	Adenovirus-mediated gene transfer to adult mouse cardiomyocytes is selectively influenced by culture medium. Journal of Gene Medicine, 2003, 5, 765-772.	2.8	16
166	Microdystrophin Gene Therapy of Cardiomyopathy Restores Dystrophin-Glycoprotein Complex and Improves Sarcolemma Integrity in the Mdx Mouse Heart. Circulation, 2003, 108, 1626-1632.	1.6	143
167	Consequences of DNA-Dependent Protein Kinase Catalytic Subunit Deficiency on Recombinant Adeno-Associated Virus Genome Circularization and Heterodimerization in Muscle Tissue. Journal of Virology, 2003, 77, 4751-4759.	3.4	52
168	[20] Recombinant AAV-mediated gene delivery using dual vector heterodimerization. Methods in Enzymology, 2002, 346, 334-357.	1.0	24
169	Development of Multiple Cloning Site cis-Vectors for Recombinant Adeno-Associated Virus Production. BioTechniques, 2002, 33, 672-678.	1.8	17
170	Modular flexibility of dystrophin: Implications for gene therapy of Duchenne muscular dystrophy. Nature Medicine, 2002, 8, 253-261.	30.7	505
171	Expanding AAV Packaging Capacity with Trans-splicing or Overlapping Vectors: A Quantitative Comparison. Molecular Therapy, 2001, 4, 383-391.	8.2	222
172	Enhancement of Muscle Gene Delivery with Pseudotyped Adeno-Associated Virus Type 5 Correlates with Myoblast Differentiation. Journal of Virology, 2001, 75, 7662-7671.	3.4	89
173	A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nature Medicine, 2000, 6, 595-598.	30.7	189
174	Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6716-6721.	7.1	275
175	Incorporation of Adeno-Associated Virus in a Calcium Phosphate Coprecipitate Improves Gene Transfer to Airway Epithelia In Vitro and In Vivo. Journal of Virology, 2000, 74, 535-540.	3.4	36
176	Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. Journal of Clinical Investigation, 2000, 105, 1573-1587.	8.2	338
177	Two Independent Molecular Pathways for Recombinant Adeno-Associated Virus Genome Conversion Occur after UV-C and E4orf6 Augmentation of Transduction. Human Gene Therapy, 1999, 10, 591-602.	2.7	57
178	Structural Analysis of Adeno-Associated Virus Transduction Circular Intermediates. Virology, 1999, 261, 8-14.	2.4	89
179	Gene Delivery to the Airway. Current Protocols in Human Genetics, 1999, 23, Unit 13.9.	3.5	3
180	Formation of Adeno-Associated Virus Circular Genomes Is Differentially Regulated by Adenovirus E4 ORF6 and E2a Gene Expression. Journal of Virology, 1999, 73, 161-169.	3.4	81

#	Article	IF	CITATIONS
181	Dynamin Is Required for Recombinant Adeno-Associated Virus Type 2 Infection. Journal of Virology, 1999, 73, 10371-10376.	3.4	148
182	Lef1 Transcription Factor Expression Defines Airway Progenitor Cell Targets for <i>In Utero</i> Gene Therapy of Submucosal Gland in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 1998, 18, 750-758.	2.9	65
183	Polarity Influences the Efficiency of Recombinant Adenoassociated Virus Infection in Differentiated Airway Epithelia. Human Gene Therapy, 1998, 9, 2761-2776.	2.7	171
184	Circular Intermediates of Recombinant Adeno-Associated Virus Have Defined Structural Characteristics Responsible for Long-Term Episomal Persistence in Muscle Tissue. Journal of Virology, 1998, 72, 8568-8577.	3.4	438
185	Structural and functional heterogeneity of integrated recombinant AAV genomes. Virus Research, 1997, 48, 41-56.	2.2	56
186	Dystrophin gene replacement and gene repair therapy for Duchenne muscular dystrophy in 2016. Human Gene Therapy Clinical Development, 0, , .	3.1	0