
Yu Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/914803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron(II) Immobilized within a Metal–Organic Framework Mixed-Matrix Membrane as a H ₂ O ₂ Turn-On Sensor. Inorganic Chemistry, 2022, 61, 3103-3110.	4.0	9
2	Enantioseparation in Hierarchically Porous Assemblies of Homochiral Cages. ACS Central Science, 2022, 8, 562-570.	11.3	8
3	Metal nanoparticles encapsulated within charge tunable porous coordination cages for hydrogen generation reaction. Catalysis Today, 2021, 374, 12-19.	4.4	4
4	A stable biocompatible porous coordination cage promotes in vivo liver tumor inhibition. Nano Research, 2021, 14, 3407-3415.	10.4	16
5	Superparamagnetic iron oxide–gold nanoparticles conjugated with porous coordination cages: Towards controlled drug release for non-invasive neuroregeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 35, 102392.	3.3	13
6	Homochiral Dodecanuclear Lanthanide "Cage in Cage―for Enantioselective Separation. Journal of the American Chemical Society, 2021, 143, 12560-12566.	13.7	59
7	Chiral Fluorescent Metal–Organic Framework with a Pentanuclear Copper Cluster as an Efficient Luminescent Probe for Dy ³⁺ Ion and Cyano Compounds. Inorganic Chemistry, 2021, 60, 15085-15090.	4.0	9
8	SC–SC Anion-Assisted Linker Exchange within a Three-Dimensional Cu(II)-Triazole Framework: A Luminescent Probe for S ^{2–} . ACS Omega, 2021, 6, 1266-1272.	3.5	0
9	Surface Charges of Porous Coordination Cage Tune the Catalytic Reactivity of Knoevenagel Condensation. Catalysis Today, 2021, , .	4.4	5
10	Transformation of Nonporous Adaptive Pillar[4]arene[1]quinone Crystals into Fluorescent Crystals via Multi-Step Solid–Vapor Postsynthetic Modification for Fluorescence Turn-on Sensing of Ethylenediamine. Journal of the American Chemical Society, 2020, 142, 15560-15568.	13.7	43
11	Biomedical Integration of Metal–Organic Frameworks. Trends in Chemistry, 2020, 2, 467-479.	8.5	66
12	Engineering a homochiral metal–organic framework based on an amino acid for enantioselective separation. Chemical Communications, 2020, 56, 9016-9019.	4.1	29
13	Metal-organic frameworks for capture and degradation of organic pollutants. , 2019, , 203-229.		6
14	Catalytic reactions within the cavity of coordination cages. Chemical Society Reviews, 2019, 48, 4707-4730.	38.1	313
15	Modulation versus Templating: Fineâ€Tuning of Hierarchally Porous PCNâ€250 Using Fatty Acids To Engineer Guest Adsorption. Angewandte Chemie - International Edition, 2019, 58, 12425-12430.	13.8	48
16	Modulation versus Templating: Fineâ€Tuning of Hierarchally Porous PCNâ€250 Using Fatty Acids To Engineer Guest Adsorption. Angewandte Chemie, 2019, 131, 12555-12560.	2.0	2
17	Bimolecular proximity of a ruthenium complex and methylene blue within an anionic porous coordination cage for enhancing photocatalytic activity. Chemical Science, 2019, 10, 3529-3534.	7.4	38
18	Formation of a Highly Reactive Cobalt Nanocluster Crystal within a Highly Negatively Charged Porous Coordination Cage. Angewandte Chemie, 2018, 130, 5381-5385.	2.0	55

Yu Fang

#	Article	IF	CITATIONS
19	Retrosynthesis of multi-component metalâ^'organic frameworks. Nature Communications, 2018, 9, 808.	12.8	159
20	Ultra-Small Face-Centered-Cubic Ru Nanoparticles Confined within a Porous Coordination Cage for Dehydrogenation. CheM, 2018, 4, 555-563.	11.7	116
21	Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018, 30, e1704303.	21.0	1,740
22	Formation of a Highly Reactive Cobalt Nanocluster Crystal within a Highly Negatively Charged Porous Coordination Cage. Angewandte Chemie - International Edition, 2018, 57, 5283-5287.	13.8	85
23	Enzymeâ€MOF Nanoreactor Activates Nontoxic Paracetamol for Cancer Therapy. Angewandte Chemie - International Edition, 2018, 57, 5725-5730.	13.8	217
24	Enzymeâ€MOF Nanoreactor Activates Nontoxic Paracetamol for Cancer Therapy. Angewandte Chemie, 2018, 130, 5827-5832.	2.0	42
25	Cancer Nanotherapy: Investigating Subcellular Compartment Targeting Effect of Porous Coordination Cages for Enhancing Cancer Nanotherapy (Small 47/2018). Small, 2018, 14, 1870225.	10.0	0
26	Bottom-Up Assembly of a Highly Efficient Metal–Organic Framework for Cooperative Catalysis. Inorganic Chemistry, 2018, 57, 13912-13919.	4.0	22
27	Investigating Subcellular Compartment Targeting Effect of Porous Coordination Cages for Enhancing Cancer Nanotherapy. Small, 2018, 14, e1802709.	10.0	36
28	Stable Metal–Organic Frameworks: Stable Metal–Organic Frameworks: Design, Synthesis, and Applications (Adv. Mater. 37/2018). Advanced Materials, 2018, 30, 1870277.	21.0	55
29	Incorporating Heavy Alkanes in Metal–Organic Frameworks for Optimizing Adsorbed Natural Gas Capacity. Chemistry - A European Journal, 2018, 24, 16977-16982.	3.3	16
30	Harnessing Structural Dynamics in a 2D Manganese–Benzoquinoid Framework To Dramatically Accelerate Metal Transport in Diffusion-Limited Metal Exchange Reactions. Journal of the American Chemical Society, 2018, 140, 11444-11453.	13.7	31
31	Applications of Immobilized Bio-Catalyst in Metal-Organic Frameworks. Catalysts, 2018, 8, 166.	3.5	26
32	Suspension Processing of Microporous Metal-Organic Frameworks: A Scalable Route to High-Quality Adsorbents. IScience, 2018, 5, 30-37.	4.1	18
33	Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews, 2017, 46, 3386-3401.	38.1	1,049
34	PCN-250 under Pressure: Sequential Phase Transformation and the Implications for MOF Densification. Joule, 2017, 1, 806-815.	24.0	65
35	Triple-Stranded Cluster Helicates for the Selective Catalytic Oxidation of C–H Bonds. Inorganic Chemistry, 2016, 55, 10102-10105.	4.0	13
36	Cavity-promoted Diels–Alder Reactions of Unsubstituted Naphthalene: Fine Reactivity Tuning by Cavity Shrinkage. Chemistry Letters, 2015, 44, 1095-1097.	1.3	17

Yu Fang

#	Article	IF	CITATIONS
37	Remote Impacts of Methyl Substituents on the Guestâ€Binding Ability of Selfâ€Assembled Cages. Chemistry - an Asian Journal, 2014, 9, 1321-1328.	3.3	6
38	Noncovalent Tailoring of the Binding Pocket of Self-Assembled Cages by Remote Bulky Ancillary Groups. Journal of the American Chemical Society, 2013, 135, 613-615.	13.7	61
39	Bottomâ€Up Assembly from a Helicate to Homochiral Micro―and Mesoporous Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2011, 50, 1154-1158.	13.8	77
40	Water clusters induced assembly of chiral organic microstructures showing reversible phase transformations and luminescence switching. Chemical Communications, 2010, 46, 2307.	4.1	18