List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9146424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Encapsidated Conformation of Bacteriophage T7 DNA. Cell, 1997, 91, 271-280.	28.9	340
2	One number does not fit all: Mapping local variations in resolution in cryo-EM reconstructions. Journal of Structural Biology, 2013, 184, 226-236.	2.8	340
3	A novel class of herpesvirus with bivalve hosts. Journal of General Virology, 2005, 86, 41-53.	2.9	260
4	A new resolution criterion based on spectral signal-to-noise ratios. Ultramicroscopy, 1987, 23, 39-51.	1.9	238
5	The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. Journal of Molecular Biology, 1996, 263, 447-462.	4.2	236
6	Assembly of the Herpes Simplex Virus Capsid: Characterization of Intermediates Observed During Cell-free Capsid Formation. Journal of Molecular Biology, 1996, 263, 432-446.	4.2	231
7	Hepatitis Core Antigen Produced in Escherichia coli: Subunit Composition, Conformation Analysis, and in Vitro Capsid Assembly. Biochemistry, 1995, 34, 4919-4932.	2.5	225
8	Beta-helix model for the filamentous haemagglutinin adhesin of Bordetella pertussis and related bacterial secretory proteins. Molecular Microbiology, 2001, 42, 279-292.	2.5	163
9	Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Current Opinion in Structural Biology, 2005, 15, 227-236.	5.7	160
10	Structure and Polymorphism of the UL6 Portal Protein of Herpes Simplex Virus Type 1. Journal of Virology, 2004, 78, 12668-12671.	3.4	159
11	Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Nature Structural and Molecular Biology, 2003, 10, 334-341.	8.2	158
12	A virus capsidâ€like nanocompartment that stores iron and protects bacteria from oxidative stress. EMBO Journal, 2014, 33, 1896-1911.	7.8	153
13	Allosteric Signaling and a Nuclear Exit Strategy: Binding of UL25/UL17 Heterodimers to DNA-Filled HSV-1 Capsids. Molecular Cell, 2007, 26, 479-489.	9.7	149
14	Novel fold and capsid-binding properties of the lambda-phage display platform protein gpD. Nature Structural Biology, 2000, 7, 230-237.	9.7	140
15	Computational resources for cryo-electron tomography in Bsoft. Journal of Structural Biology, 2008, 161, 232-242.	2.8	128
16	Isolation of Herpes Simplex Virus Procapsids from Cells Infected with a Protease-Deficient Mutant Virus. Journal of Virology, 2000, 74, 1663-1673.	3.4	115
17	Assembly of the Herpes Simplex Virus Procapsid from Purified Components and Identification of Small Complexes Containing the Major Capsid and Scaffolding Proteins. Journal of Virology, 1999, 73, 4239-4250.	3.4	111
18	Structural Changes in Influenza Virus at Low pH Characterized by Cryo-Electron Tomography. Journal of Virology, 2012, 86, 2919-2929.	3.4	109

#	Article	IF	CITATIONS
19	Visualization of the herpes simplex virus portal in situ by cryo-electron tomography. Virology, 2007, 361, 426-434.	2.4	107
20	Six-fold rotational symmetry of ClpQ, theE. colihomolog of the 20S proteasome, and its ATP-dependent activator, ClpY. FEBS Letters, 1996, 398, 274-278.	2.8	105
21	Stability and Shape of Hepatitisâ€B Virus Capsids Inâ€Vacuo. Angewandte Chemie - International Edition, 2008, 47, 6247-6251.	13.8	101
22	Distribution and Redistribution of HIV-1 Nucleocapsid Protein in Immature, Mature, and Integrase-Inhibited Virions: a Role for Integrase in Maturation. Journal of Virology, 2015, 89, 9765-9780.	3.4	91
23	Capsid Structure of Simian Cytomegalovirus from Cryoelectron Microscopy: Evidence for Tegument Attachment Sites. Journal of Virology, 1999, 73, 2181-2192.	3.4	86
24	Structure, Assembly, and Antigenicity of Hepatitis B Virus Capsid Proteins. Advances in Virus Research, 2005, 64, 125-164.	2.1	83
25	Prion Filament Networks in [Ure3] Cells of Saccharomyces cerevisiae. Journal of Cell Biology, 2001, 153, 1327-1336.	5.2	79
26	Decoration of the microtubule surface by one kinesin head per tubulin heterodimer. Nature, 1993, 362, 73-75.	27.8	78
27	The next ice age: cryo-electron tomography of intact cells. Trends in Cell Biology, 2003, 13, 107-110.	7.9	72
28	Procapsid Assembly, Maturation, Nuclear Exit: Dynamic Steps in the Production of Infectious Herpesvirions. Advances in Experimental Medicine and Biology, 2012, 726, 423-439.	1.6	68
29	Maturation of the Human Papillomavirus 16 Capsid. MBio, 2014, 5, e01104-14.	4.1	64
30	Bubblegrams Reveal the Inner Body of Bacteriophage ϕKZ. Science, 2012, 335, 182-182.	12.6	63
31	Structural Basis of hAT Transposon End Recognition by Hermes, an Octameric DNA Transposase from Musca domestica. Cell, 2014, 158, 353-367.	28.9	63
32	Antigenic Switching of Hepatitis B Virus by Alternative Dimerization of the Capsid Protein. Structure, 2013, 21, 133-142.	3.3	61
33	Cryo-EM structure and in vitro DNA packaging of a thermophilic virus with supersized T=7 capsids. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3556-3561.	7.1	54
34	Structure and Energetics of Encapsidated DNA in Bacteriophage HK97 Studied by Scanning Calorimetry and Cryo-electron Microscopy. Journal of Molecular Biology, 2009, 391, 471-483.	4.2	52
35	A Second Symmetry Mismatch at the Portal Vertex of Bacteriophage T7: 8-fold Symmetry in the Procapsid Core. Journal of Molecular Biology, 2003, 327, 1-6.	4.2	49
36	Paired octamer rings of retinoschisin suggest a junctional model for cell–cell adhesion in the retina. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5287-5292.	7.1	49

#	Article	IF	CITATIONS
37	α-Synuclein Amyloid Fibrils with Two Entwined, Asymmetrically Associated Protofibrils. Journal of Biological Chemistry, 2016, 291, 2310-2318.	3.4	48
38	The Primary Enveloped Virion of Herpes Simplex Virus 1: Its Role in Nuclear Egress. MBio, 2017, 8, .	4.1	44
39	Distribution of DNA-condensing protein complexes in the adenovirus core. Nucleic Acids Research, 2015, 43, 4274-4283.	14.5	41
40	Influenza virus-mediated membrane fusion: Structural insights from electron microscopy. Archives of Biochemistry and Biophysics, 2015, 581, 86-97.	3.0	36
41	Lce1 Family Members Are Nrf2-Target Genes that Are Induced to Compensate forÂthe Loss of Loricrin. Journal of Investigative Dermatology, 2016, 136, 1656-1663.	0.7	32
42	BIOCHEMISTRY: Viral Glycoproteins and an Evolutionary Conundrum. Science, 2006, 313, 177-178.	12.6	31
43	Identification of an HIV-1 Mutation in Spacer Peptide 1 That Stabilizes the Immature CA-SP1 Lattice. Journal of Virology, 2016, 90, 972-978.	3.4	31
44	Subassemblies and Asymmetry in Assembly of Herpes Simplex Virus Procapsid. MBio, 2015, 6, e01525-15.	4.1	28
45	Localization of the Houdinisome (Ejection Proteins) inside the Bacteriophage P22 Virion by Bubblegram Imaging. MBio, 2016, 7, .	4.1	27
46	Molecular architecture of bacteriophage T7 capsid. Virology, 1983, 124, 109-120.	2.4	26
47	A Computational Assay that Explores the Hemagglutinin/Neuraminidase Functional Balance Reveals the Neuraminidase Secondary Site as a Novel Anti-Influenza Target. ACS Central Science, 2018, 4, 1570-1577.	11.3	25
48	Shared motifs of the capsid proteins of hepadnaviruses and retroviruses suggest a common evolutionary origin. FEBS Letters, 1998, 431, 301-304.	2.8	23
49	Exploiting radiation damage to map proteins in nucleoprotein complexes: The internal structure of bacteriophage T7. Journal of Structural Biology, 2014, 185, 250-256.	2.8	23
50	Cryo-EM structure in situ reveals a molecular switch that safeguards virus against genome loss. ELife, 2020, 9, .	6.0	23
51	The Structure of HIV-1 Rev Filaments Suggests a Bilateral Model for Rev-RRE Assembly. Structure, 2016, 24, 1068-1080.	3.3	22
52	Role of the Propeptide in Controlling Conformation and Assembly State of Hepatitis B Virus e-Antigen. Journal of Molecular Biology, 2011, 409, 202-213.	4.2	21
53	Molecular Basis for the High Degree of Antigenic Cross-Reactivity between Hepatitis B Virus Capsids (HBcAg) and Dimeric Capsid-Related Protein (HBeAg): Insights into the Enigmatic Nature of the e-Antigen. Journal of Molecular Biology, 2010, 398, 530-541.	4.2	20
54	A Cell-penetrating Antibody Fragment against HIV-1 Rev Has High Antiviral Activity. Journal of Biological Chemistry, 2014, 289, 20222-20233.	3.4	20

#	Article	IF	CITATIONS
55	Structure of an RNA Aptamer that Can Inhibit HIV-1 by Blocking Rev-Cognate RNA (RRE) Binding and Rev-Rev Association. Structure, 2018, 26, 1187-1195.e4.	3.3	18
56	Global Proteomic Profiling of <i>Salmonella</i> Infection by a Giant Phage. Journal of Virology, 2019, 93, .	3.4	18
57	Cryo-EM of retinoschisin branched networks suggests an intercellular adhesive scaffold in the retina. Journal of Cell Biology, 2019, 218, 1027-1038.	5.2	17
58	Structural characterization of the Myxococcus xanthus encapsulin and ferritin-like cargo system gives insight into its iron storage mechanism. Structure, 2022, 30, 551-563.e4.	3.3	16
59	Structures of Hepatitis B Virus Core- and e-Antigen Immune Complexes Suggest Multi-point Inhibition. Structure, 2018, 26, 1314-1326.e4.	3.3	15
60	Internal Proteins of the Procapsid and Mature Capsids of Herpes Simplex Virus 1 Mapped by Bubblegram Imaging. Journal of Virology, 2016, 90, 5176-5186.	3.4	13
61	A new HIV-1 Rev structure optimizes interaction with target RNA (RRE) for nuclear export. Journal of Structural Biology, 2018, 203, 102-108.	2.8	13
62	The RNA-Binding Protein of a Double-Stranded RNA Virus Acts like a Scaffold Protein. Journal of Virology, 2018, 92, .	3.4	13
63	Identification of a Structural Element in HIV-1 Gag Required for Virus Particle Assembly and Maturation. MBio, 2018, 9, .	4.1	12
64	Expression of quasi-equivalence and capsid dimorphism in the Hepadnaviridae. PLoS Computational Biology, 2020, 16, e1007782.	3.2	10
65	INI1/SMARCB1 Rpt1 domain mimics TAR RNA in binding to integrase to facilitate HIV-1 replication. Nature Communications, 2021, 12, 2743.	12.8	9
66	The Mottled Capsid of the Salmonella Giant Phage SPN3US, a Likely Maturation Intermediate with a Novel Internal Shell. Viruses, 2020, 12, 910.	3.3	8
67	Cryo-Electron Tomography of the Herpesvirus Procapsid Reveals Interactions of the Portal with the Scaffold and a Shift on Maturation. MBio, 2021, 12, .	4.1	8
68	Chimeric rabbit/human Fab antibodies against the hepatitis Be-antigen and their potential applications in assays, characterization, and therapy. Journal of Biological Chemistry, 2017, 292, 16760-16772.	3.4	7
69	Conformational Switching in PolyGln Amyloid Fibrils Resulting from a Single Amino Acid Insertion. Biophysical Journal, 2014, 106, 2134-2142.	O.5	3
70	Phage Capsid-like Structure of Myxococcus xanthus Encapsulin, a Protein Shell That Stores Iron. Microscopy and Microanalysis, 2014, 20, 1244-1245.	0.4	3
71	Capsids of hepatitis B virus e antigen with authentic C termini are stabilized by electrostatic interactions. FEBS Letters, 2020, 594, 1052-1061.	2.8	3
72	Biphasic Packing of DNA and Internal Proteins in Bacteriophage T4 Heads Revealed by Bubblegram Imaging. Viruses, 2020, 12, 1282.	3.3	2

#	Article	IF	CITATIONS
73	Cryo-Electron Microscopy in the Era of Structural Proteomics. , 2008, , 269-306.		1
74	Exploiting the Susceptibility of HIV-1 Nucleocapsid Protein to Radiation Damage in Tomo-Bubblegram Imaging. Microscopy and Microanalysis, 2015, 21, 545-546.	0.4	1
75	A Polymerase-Activating Host Factor, YajQ, Bound to the Bacteriophage ϕ6 Capsid. Microscopy and Microanalysis, 2016, 22, 1110-1111.	0.4	1
76	Hunting for the Adhesion Molecule, Retinoschisin, in Retina using CEMOVIS. Microscopy and Microanalysis, 2019, 25, 1308-1309.	0.4	1
77	Prohead Perestroika: Bacteriophage T7 Capsid Before and After Maturation. Microscopy and Microanalysis, 1997, 3, 93-94.	0.4	0
78	Protein Unfolding and Degradation by the CLP Family of Proteases. Microscopy and Microanalysis, 1998, 4, 978-979.	0.4	0
79	Proteolytic Control of Bacteriophage HK97 Capsid Maturation Microscopy and Microanalysis, 1998, 4, 984-985.	0.4	0
80	ATP-Dependent Conformational Changes and Translocation of Substrates in Clpap Protease as Revealed by Cryo-Electron Microscopy. Microscopy and Microanalysis, 2000, 6, 260-261.	0.4	0
81	Vive La Différence! Mapping Macromolecular Complexes by Generalized Difference Imaging. Microscopy and Microanalysis, 2000, 6, 252-253.	0.4	0
82	[URE3] Prion forms Filamentous Networks in Yeast Cytoplasm. Microscopy and Microanalysis, 2001, 7, 52-53.	0.4	0
83	Functional Architecture of a Protein-Degradation Machine. Microscopy and Microanalysis, 2002, 8, 204-205.	0.4	0
84	Signal Transduction at a Protein Synapse. Cell, 2004, 118, 403-404.	28.9	0
85	HSV-1 Scaffolding Protein Bubbles Readily in the Absence or Presence of DNA, Allowing its Localization in Immature and Mature Nucleocapsids. Microscopy and Microanalysis, 2015, 21, 723-724.	0.4	0
86	α-Synuclein Amyloid Fibrils Formed of Two Protofibrils. Microscopy and Microanalysis, 2015, 21, 1285-1286.	0.4	0
87	Galactose Induces Formation of Chains of the Retinal Adhesion Protein, Retinoschisin. Microscopy and Microanalysis, 2017, 23, 1112-1113.	0.4	0
88	Primary Envelopment of the Herpes Simplex 1 Virion. Microscopy and Microanalysis, 2017, 23, 1224-1225.	0.4	0
89	Applications of Bubblegram Imaging. Microscopy and Microanalysis, 2017, 23, 1258-1259.	0.4	0