
## Hanno Glimm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9146160/publications.pdf Version: 2024-02-01



HANNO CLIMM

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nature Medicine, 2006, 12, 401-409.   | 30.7 | 1,129     |
| 2  | Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nature Medicine, 2010, 16, 198-204.  | 30.7 | 727       |
| 3  | Stem-Cell Gene Therapy for the Wiskott–Aldrich Syndrome. New England Journal of Medicine, 2010,<br>363, 1918-1927.                                                              | 27.0 | 505       |
| 4  | An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nature Biotechnology, 2011, 29,<br>816-823.                                                               | 17.5 | 488       |
| 5  | Gene Therapy for Wiskott-Aldrich Syndrome—Long-Term Efficacy and Genotoxicity. Science<br>Translational Medicine, 2014, 6, 227ra33.                                             | 12.4 | 460       |
| 6  | High-resolution insertion-site analysis by linear amplification–mediated PCR (LAM-PCR). Nature<br>Methods, 2007, 4, 1051-1057.                                                  | 19.0 | 281       |
| 7  | Distinct Types of Tumor-Initiating Cells Form Human Colon Cancer Tumors and Metastases. Cell Stem<br>Cell, 2011, 9, 357-365.                                                    | 11.1 | 276       |
| 8  | Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. Journal of Clinical Investigation, 2007, 117, 2225-2232.        | 8.2  | 221       |
| 9  | Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nature Communications, 2018, 9, 144.                                                                         | 12.8 | 197       |
| 10 | <i>NRG1</i> Fusions in <i>KRAS</i> Wild-Type Pancreatic Cancer. Cancer Discovery, 2018, 8, 1087-1095.                                                                           | 9.4  | 189       |
| 11 | Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. Journal of Clinical Investigation, 2007, 117, 2241-2249. | 8.2  | 185       |
| 12 | Comprehensive genomic access to vector integration in clinical gene therapy. Nature Medicine, 2009, 15, 1431-1436.                                                              | 30.7 | 173       |
| 13 | Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing.<br>Nature Protocols, 2010, 5, 1379-1395.                                            | 12.0 | 161       |
| 14 | The <scp>tRNA</scp> methyltransferase Dnmt2 is required forÂaccurate polypeptide synthesis<br>duringÂhaematopoiesis. EMBO Journal, 2015, 34, 2350-2362.                         | 7.8  | 154       |
| 15 | Precision oncology based on omics data: The NCT Heidelberg experience. International Journal of Cancer, 2017, 141, 877-886.                                                     | 5.1  | 133       |
| 16 | Integrating next-generation sequencing into clinical oncology: strategies, promises and pitfalls.<br>ESMO Open, 2016, 1, e000094.                                               | 4.5  | 126       |
| 17 | Comprehensive Genomic and Transcriptomic Analysis for Guiding Therapeutic Decisions in Patients with Rare Cancers. Cancer Discovery, 2021, 11, 2780-2795.                       | 9.4  | 125       |
| 18 | High-resolution analysis of the human T-cell receptor repertoire. Nature Communications, 2015, 6,<br>8081.                                                                      | 12.8 | 123       |

Hanno Glimm

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Recurrent CDKN1B (p27) mutations in hairy cell leukemia. Blood, 2015, 126, 1005-1008.                                                                                                                                                | 1.4  | 88        |
| 20 | Harmonization and Standardization of Panel-Based Tumor Mutational Burden Measurement:<br>Real-World Results and Recommendations ofÂtheÂQuality in Pathology Study. Journal of Thoracic<br>Oncology, 2020, 15, 1177-1189.             | 1.1  | 81        |
| 21 | The landscape of chromothripsis across adult cancer types. Nature Communications, 2020, 11, 2320.                                                                                                                                    | 12.8 | 75        |
| 22 | Cell-of-Origin DNA Methylation Signatures Are Maintained during Colorectal Carcinogenesis. Cell<br>Reports, 2018, 23, 3407-3418.                                                                                                     | 6.4  | 66        |
| 23 | The AP-1 transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow microenvironment. Leukemia, 2017, 31, 1570-1581.                                                      | 7.2  | 60        |
| 24 | Integration of genomics and histology revises diagnosis and enables effective therapy of refractory cancer of unknown primary with <i>PDL1</i> amplification. Journal of Physical Education and Sports Management, 2016, 2, a001180. | 1.2  | 57        |
| 25 | Cooperation of BRAFF595L and mutant HRAS in histiocytic sarcoma provides new insights into oncogenic BRAF signaling. Leukemia, 2016, 30, 937-946.                                                                                    | 7.2  | 52        |
| 26 | PD-L1 (CD274) copy number gain, expression, and immune cell infiltration as candidate predictors for response to immune checkpoint inhibitors in soft-tissue sarcoma. Oncolmmunology, 2017, 6, e1279777.                             | 4.6  | 50        |
| 27 | Asymmetric Centriole Numbers at Spindle Poles Cause Chromosome Missegregation in Cancer. Cell<br>Reports, 2017, 20, 1906-1920.                                                                                                       | 6.4  | 49        |
| 28 | Degradation of CCNK/CDK12 is a druggable vulnerability of colorectal cancer. Cell Reports, 2021, 36, 109394.                                                                                                                         | 6.4  | 41        |
| 29 | Succession of transiently active tumorâ€initiating cell clones in human pancreatic cancer xenografts.<br>EMBO Molecular Medicine, 2017, 9, 918-932.                                                                                  | 6.9  | 36        |
| 30 | Efficient marking of human cells with rapid but transient repopulating activity in autografted recipients. Blood, 2005, 106, 893-898.                                                                                                | 1.4  | 33        |
| 31 | Genome-wide Specificity of Highly Efficient TALENs and CRISPR/Cas9 for T Cell Receptor Modification.<br>Molecular Therapy - Methods and Clinical Development, 2017, 4, 213-224.                                                      | 4.1  | 32        |
| 32 | YAP Orchestrates Heterotypic Endothelial Cell Communication via HGF/c-MET Signaling in Liver<br>Tumorigenesis. Cancer Research, 2020, 80, 5502-5514.                                                                                 | 0.9  | 31        |
| 33 | Genetic subclone architecture of tumor clone-initiating cells in colorectal cancer. Journal of<br>Experimental Medicine, 2017, 214, 2073-2088.                                                                                       | 8.5  | 30        |
| 34 | Mutant KIT as imatinib-sensitive target in metastatic sinonasal carcinoma. Annals of Oncology, 2017, 28, 142-148.                                                                                                                    | 1.2  | 30        |
| 35 | Targeting Fibroblast Growth Factor Receptor 1 for Treatment of Soft-Tissue Sarcoma. Clinical Cancer<br>Research, 2017, 23, 962-973.                                                                                                  | 7.0  | 29        |
| 36 | Salinomycin: Anti-tumor activity in a pre-clinical colorectal cancer model. PLoS ONE, 2019, 14, e0211916.                                                                                                                            | 2.5  | 27        |

HANNO GLIMM

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Patient-derived xenografts of gastrointestinal cancers are susceptible to rapid and delayed<br>B-lymphoproliferation. International Journal of Cancer, 2017, 140, 1356-1363.                                              | 5.1  | 26        |
| 38 | A Model for the Detection of Clonality in Marked Hematopoietic Stem Cells. Annals of the New York<br>Academy of Sciences, 2001, 938, 146-156.                                                                             | 3.8  | 25        |
| 39 | Conceptual framework for precision cancer medicine in Germany: Consensus statement of the<br>Deutsche Krebshilfe working group â€~Molecular Diagnostics and Therapy'. European Journal of Cancer,<br>2020, 135, 1-7.      | 2.8  | 23        |
| 40 | Targetable ERBB2 mutations identified in neurofibroma/schwannoma hybrid nerve sheath tumors.<br>Journal of Clinical Investigation, 2020, 130, 2488-2495.                                                                  | 8.2  | 23        |
| 41 | KIT-Dependent and KIT-Independent Genomic Heterogeneity of Resistance in Gastrointestinal Stromal<br>Tumors — TORC1/2 Inhibition as Salvage Strategy. Molecular Cancer Therapeutics, 2019, 18, 1985-1996.                 | 4.1  | 22        |
| 42 | Validating Comprehensive Next-Generation Sequencing Results for Precision Oncology: The NCT/DKTK<br>Molecularly Aided Stratification for Tumor Eradication Research Experience. JCO Precision Oncology,<br>2018, 2, 1-13. | 3.0  | 20        |
| 43 | So rare we need to hunt for them: reframing the ethical debate on incidental findings. Genome<br>Medicine, 2015, 7, 83.                                                                                                   | 8.2  | 19        |
| 44 | Identification and characterization of a BRAF fusion oncoprotein with retained autoinhibitory domains. Oncogene, 2020, 39, 814-832.                                                                                       | 5.9  | 19        |
| 45 | Identification of BCL-XL as highly active survival factor and promising therapeutic target in colorectal cancer. Cell Death and Disease, 2020, 11, 875.                                                                   | 6.3  | 17        |
| 46 | YAPâ€induced Ccl2 expression is associated with a switch in hepatic macrophage identity and vascular remodelling in liver cancer. Liver International, 2021, 41, 3011-3023.                                               | 3.9  | 17        |
| 47 | Pheno-seq – linking visual features and gene expression in 3D cell culture systems. Scientific Reports, 2019, 9, 12367.                                                                                                   | 3.3  | 16        |
| 48 | Mapping Active Gene-Regulatory Regions in Human Repopulating Long-Term HSCs. Cell Stem Cell, 2018, 23, 132-146.e9.                                                                                                        | 11.1 | 14        |
| 49 | Stk33 is required for spermatid differentiation and male fertility in mice. Developmental Biology, 2018, 433, 84-93.                                                                                                      | 2.0  | 13        |
| 50 | Colorectal cancerâ€initiating cells caught in the act. EMBO Molecular Medicine, 2017, 9, 856-858.                                                                                                                         | 6.9  | 12        |
| 51 | Stable Long-Term Blood Formation by Stem Cells in Murine Steady-State Hematopoiesis. Stem Cells, 2012, 30, 1961-1970.                                                                                                     | 3.2  | 11        |
| 52 | Phenotypic differentiation does not affect tumorigenicity of primary human colon cancer initiating cells. Cancer Letters, 2016, 371, 326-333.                                                                             | 7.2  | 11        |
| 53 | Genomics of Immunotherapy-Associated Hyperprogressors—Letter. Clinical Cancer Research, 2017, 23,<br>6374-6375.                                                                                                           | 7.0  | 11        |
| 54 | Metastatic adult pancreatoblastoma: Multimodal treatment and molecular characterization of a very rare disease. Pancreatology, 2020, 20, 425-432.                                                                         | 1.1  | 11        |

HANNO GLIMM

| #  | Article                                                                                                                                                                                                                                              | IF              | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 55 | Functional States in Tumor-Initiating Cell Differentiation in Human Colorectal Cancer. Cancers, 2021, 13, 1097.                                                                                                                                      | 3.7             | 11           |
| 56 | You Can Count on This: Barcoded Hematopoietic Stem Cells. Cell Stem Cell, 2011, 9, 390-392.                                                                                                                                                          | 11.1            | 10           |
| 57 | Induction of the proapoptotic tumor suppressor gene <i>Cell Adhesion Molecule 1</i> by chemotherapeutic agents is repressed in therapy resistant acute myeloid leukemia. Molecular Carcinogenesis, 2015, 54, 1815-1819.                              | 2.7             | 9            |
| 58 | Systematic Generation of Patient-Derived Tumor Models in Pancreatic Cancer. Cells, 2019, 8, 142.                                                                                                                                                     | 4.1             | 9            |
| 59 | High-throughput monitoring of integration site clonality in preclinical and clinical gene therapy studies. Molecular Therapy - Methods and Clinical Development, 2015, 2, 14061.                                                                     | 4.1             | 8            |
| 60 | Detection of Structural Variants in Circulating Cell-Free DNA from Sarcoma Patients Using Next<br>Generation Sequencing. Cancers, 2020, 12, 3627.                                                                                                    | 3.7             | 7            |
| 61 | Sustained Polyclonal Hematopoietic Repopulation after Successful SCID-X1 Gene Therapy by Means of a Non Random Integrating Pseudotyped Gammaretrovector Blood, 2004, 104, 290-290.                                                                   | 1.4             | 7            |
| 62 | High tumour mutational burden and EGFR/MAPK pathway activation are therapeutic targets in metastatic porocarcinoma. British Journal of Dermatology, 2021, , .                                                                                        | 1.5             | 6            |
| 63 | Rationale and design of the CRAFT (Continuous ReAssessment with Flexible ExTension in Rare) Tj ETQq1 1 0.784                                                                                                                                         | 314 rgBT<br>4.5 | /Oyerlock 10 |
| 64 | A perivascular niche in the bone marrow hosts quiescent and proliferating tumorigenic colorectal cancer cells. International Journal of Cancer, 2020, 147, 519-531.                                                                                  | 5.1             | 5            |
| 65 | Ruxolitinib is effective in the treatment of a patient with refractory Tâ€ALL. EJHaem, 2021, 2, 139-142.                                                                                                                                             | 1.0             | 4            |
| 66 | Response to Cabozantinib Following Acquired Entrectinib Resistance in a Patient<br>With <i>ETV6-NTRK3</i> Fusion-Positive Carcinoma Harboring<br>the <i>NTRK3</i> <sup>G623R</sup> Solvent-Front Mutation. JCO Precision Oncology, 2021, 5, 687-694. | 3.0             | 3            |
| 67 | <scp>MGMT</scp> inactivation as a new biomarker in patients with advanced biliary tract cancers.<br>Molecular Oncology, 2022, 16, 2733-2746.                                                                                                         | 4.6             | 2            |
| 68 | Persistence of eGFP Marked Bone Marrow Cells in Long-Term Hematopoiesis Blood, 2004, 104, 2111-2111.                                                                                                                                                 | 1.4             | 0            |
| 69 | Insertional Activation of MDS1/EVI1, PRDM16 and SETBP1 in a Successful Chronic Granulomatous Disease (CGD) Gene Therapy Trial Blood, 2006, 108, 3274-3274.                                                                                           | 1.4             | 0            |
| 70 | Deregulated EVI1 Expression Leads to Genomic Instability and G1 Cell Cycle Arrest. Blood, 2011, 118, 2431-2431.                                                                                                                                      | 1.4             | 0            |
| 71 | Recurrent Germline Variant in the Cohesin Complex Gene <i>RAD21</i> Predisposes Children to Lymphoblastic Leukemia and Lymphoma. Blood, 2021, 138, 3358-3358.                                                                                        | 1.4             | 0            |