List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/914591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An optimized spectrophotometric assay reveals increased activity of enzymes involved in 2â€∎rachidonoyl glycerol turnover in the cerebral cortex of a rat model of Alzheimer's disease. European Journal of Neuroscience, 2022, 55, 1051-1062.	2.6	3
2	Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome. Molecules, 2022, 27, 1489.	3.8	11
3	Diabetes and Cannabinoid CB1 receptor deficiency promote similar early onset aging-like changes in the skin. Experimental Gerontology, 2021, 154, 111528.	2.8	5
4	The Yin and Yang of Adenosine Receptors: A Piquant Story. Journal of Caffeine and Adenosine Research, 2020, 10, 42-44.	0.6	0
5	Transient gain of function of cannabinoid CB1 receptors in the control of frontocortical glucose consumption in a rat model of Type-1 diabetes. Brain Research Bulletin, 2020, 161, 106-115.	3.0	3
6	Control of glutamate release by complexes of adenosine and cannabinoid receptors. BMC Biology, 2020, 18, 9.	3.8	51
7	Chronic insulinopenia/hyperglycemia decreases cannabinoid CB1 receptor density and impairs glucose uptake in the mouse forebrain. Brain Research Bulletin, 2019, 147, 101-109.	3.0	4
8	Memory deficits induced by chronic cannabinoid exposure are prevented by adenosine A2AR receptor antagonism. Neuropharmacology, 2019, 155, 10-21.	4.1	21
9	Glutamate-induced and NMDA receptor-mediated neurodegeneration entails P2Y1 receptor activation. Cell Death and Disease, 2018, 9, 297.	6.3	58
10	Adenosine A2A Receptors in the Rat Prelimbic Medial Prefrontal Cortex Control Delay-Based Cost-Benefit Decision Making. Frontiers in Molecular Neuroscience, 2018, 11, 475.	2.9	16
11	Neuronal Adenosine A2A Receptors Are Critical Mediators of Neurodegeneration Triggered by Convulsions. ENeuro, 2018, 5, ENEURO.0385-18.2018.	1.9	58
12	Caffeine Reverts Memory But Not Mood Impairment in a Depression-Prone Mouse Strain with Up-Regulated Adenosine A2A Receptor in Hippocampal Glutamate Synapses. Molecular Neurobiology, 2017, 54, 1552-1563.	4.0	55
13	Methamphetamine Induces Anhedonicâ€Like Behavior and Impairs Frontal Cortical Energetics in Mice. CNS Neuroscience and Therapeutics, 2017, 23, 119-126.	3.9	12
14	Cannabis: A Treasure Trove or Pandora's Box?. Mini-Reviews in Medicinal Chemistry, 2017, 17, 1223-1291.	2.4	67
15	Boosting brain glucose metabolism to fight neurodegeneration?. Oncotarget, 2017, 8, 14273-14274.	1.8	7
16	Hierarchical glucocorticoid-endocannabinoid interplay regulates the activation of the nucleus accumbens by insulin. Brain Research Bulletin, 2016, 124, 222-230.	3.0	12
17	Stimulation of brain glucose uptake by cannabinoid CB2 receptors and its therapeutic potential in Alzheimer's disease. Neuropharmacology, 2016, 110, 519-529.	4.1	43
18	Ketone bodies effectively compete with glucose for neuronal acetylâ€CoA generation in rat hippocampal slices. NMR in Biomedicine, 2015, 28, 1111-1116.	2.8	28

#	Article	lF	CITATIONS
19	Presynaptic adenosine <scp>A_{2A}</scp> receptors dampen cannabinoid <scp>CB</scp> ₁ receptorâ€mediated inhibition of corticostriatal glutamatergic transmission. British Journal of Pharmacology, 2015, 172, 1074-1086.	5.4	45
20	Adenosine A _{2b} receptors control A ₁ receptorâ€mediated inhibition of synaptic transmission in the mouse hippocampus. European Journal of Neuroscience, 2015, 41, 878-888.	2.6	43
21	Lack of presynaptic interaction between glucocorticoid and CB1 cannabinoid receptors in GABA- and glutamatergic terminals in the frontal cortex of laboratory rodents. Neurochemistry International, 2015, 90, 72-84.	3.8	9
22	Adenosine A2B receptor activation stimulates glucose uptake in the mouse forebrain. Purinergic Signalling, 2015, 11, 561-569.	2.2	26
23	Behavioral Phenotyping of Parkin-Deficient Mice: Looking for Early Preclinical Features of Parkinson's Disease. PLoS ONE, 2014, 9, e114216.	2.5	94
24	Presynaptic TRPV1 vanilloid receptor function is age- but not CB1 cannabinoid receptor-dependent in the rodent forebrain. Brain Research Bulletin, 2013, 97, 126-135.	3.0	14
25	Functional interaction between preâ€synaptic <scp>α6β2</scp> â€containing nicotinic and adenosine <scp>A_{2A}</scp> receptors in the control of dopamine release in the rat striatum. British Journal of Pharmacology, 2013, 169, 1600-1611.	5.4	29
26	Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. European Neuropsychopharmacology, 2013, 23, 317-328.	0.7	92
27	CB1 receptor activation inhibits neuronal and astrocytic intermediary metabolism in the rat hippocampus. Neurochemistry International, 2012, 60, 1-8.	3.8	27
28	Presynaptic CB1 cannabinoid receptors control frontocortical serotonin and glutamate release – Species differences. Neurochemistry International, 2012, 61, 219-226.	3.8	33
29	Presynaptic α2-adrenoceptors control the inhibitory action of presynaptic CB1 cannabinoid receptors on prefrontocortical norepinephrine release in the rat. Neuropharmacology, 2012, 63, 784-797.	4.1	17
30	Impaired hippocampal glucoregulation in the cannabinoid CB1 receptor knockout mice as revealed by an optimized in vitro experimental approach. Journal of Neuroscience Methods, 2012, 204, 366-373.	2.5	6
31	Pre-synaptic adenosine A2A receptors control cannabinoid CB1 receptor-mediated inhibition of striatal glutamatergic neurotransmission. Journal of Neurochemistry, 2011, 116, 273-280.	3.9	59
32	Cannabinoids inhibit the synaptic uptake of adenosine and dopamine in the rat and mouse striatum. European Journal of Pharmacology, 2011, 655, 38-45.	3.5	64
33	Diabetes induces early transient changes in the content of vesicular transporters and no major effects in neurotransmitter release in hippocampus and retina. Brain Research, 2011, 1383, 257-269.	2.2	27
34	Functional Identification of Cell Phenotypes Differentiating from Mice Retinal Neurospheres Using Single Cell Calcium Imaging. Cellular and Molecular Neurobiology, 2011, 31, 835-846.	3.3	19
35	Molecular reorganization of endocannabinoid signalling in Alzheimer's disease. Brain, 2011, 134, 1041-1060.	7.6	164
36	Modification upon aging of the density of presynaptic modulation systems in the hippocampus. Neurobiology of Aging, 2009, 30, 1877-1884.	3.1	117

#	Article	IF	CITATIONS
37	N-acyldopamines control striatal input terminals via novel ligand-gated cation channels. Neuropharmacology, 2009, 56, 676-683.	4.1	17
38	An Historical Introduction to the Endocannabinoid and Endovanilloid Systems. , 2008, , 3-13.		1
39	Alternative Interacting Sites and Novel Receptors for Cannabinoid Ligands. , 2008, , 131-160.		5
40	Cannabinoids and the Brain. , 2008, , .		8
41	Endocannabinoids in Energy Homeostasis and Metabolic Disorders. , 2008, , 277-316.		1
42	The Endocannabinoid System is a Major Player in Schizophrenia. , 2008, , 485-528.		3
43	Increase of cannabinoid CB1 receptor density in the hippocampus of streptozotocin-induced diabetic rats. Experimental Neurology, 2007, 204, 479-484.	4.1	34
44	Anandamide and NADA bi-directionally modulate presynaptic Ca2+ levels and transmitter release in the hippocampus. British Journal of Pharmacology, 2007, 151, 551-563.	5.4	34
45	Differential glutamate-dependent and glutamate-independent adenosine A1receptor-mediated modulation of dopamine release in different striatal compartments. Journal of Neurochemistry, 2007, 101, 355-363.	3.9	104
46	Lack of evidence for functional TRPV1 vanilloid receptors in rat hippocampal nerve terminals. Neuroscience Letters, 2006, 403, 151-156.	2.1	39
47	CB1 Receptor Antagonism Increases Hippocampal Acetylcholine Release: Site and Mechanism of Action. Molecular Pharmacology, 2006, 70, 1236-1245.	2.3	78
48	Supersensitivity of P2X7 receptors in cerebrocortical cell cultures after in vitro ischemia. Journal of Neurochemistry, 2005, 95, 1421-1437.	3.9	81
49	Involvement of Cannabinoid Receptors in the Regulation of Neurotransmitter Release in the Rodent Striatum: A Combined Immunochemical and Pharmacological Analysis. Journal of Neuroscience, 2005, 25, 2874-2884.	3.6	221
50	P2X Receptor Activation Elicits Transporter-Mediated Noradrenaline Release from Rat Hippocampal Slices. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 973-980.	2.5	38
51	Cannabinoids inhibit the release of [3H]glutamate from rodent hippocampal synaptosomes via a novel CB1 receptor-independent action. European Journal of Neuroscience, 2003, 18, 1973-1978.	2.6	65
52	Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus. Journal of Neurochemistry, 2002, 81, 1196-1211.	3.9	247
53	Excessive release of [3H]noradrenaline by veratridine and ischemia in spinal cord. Neurochemistry International, 2001, 39, 59-63.	3.8	13
54	Distinct mechanisms underlying alpha1-adrenoceptor and P2x purinoceptor operated ATP release and contraction in the guinea-pig vas deferens. Neurochemical Research, 2001, 26, 951-957.	3.3	7

#	Article	IF	CITATIONS
55	GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience, 2000, 100, 797-804.	2.3	219
56	Presynaptically Located CB1 Cannabinoid Receptors Regulate GABA Release from Axon Terminals of Specific Hippocampal Interneurons. Journal of Neuroscience, 1999, 19, 4544-4558.	3.6	1,030
57	Synthetic cannabinoids inhibit the dopamine transporter whereby increasing stimulated presynaptic net dopamine release in the rat striatum. Frontiers in Neuroscience, 0, 3, .	2.8	0