Hiroshi Ohta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9145029/publications.pdf Version: 2024-02-01

Ηιροςμι Οητλ

#	Article	IF	CITATIONS
1	Reconstitution of the Mouse Germ Cell Specification Pathway in Culture by Pluripotent Stem Cells. Cell, 2011, 146, 519-532.	28.9	1,156
2	Offspring from Oocytes Derived from in Vitro Primordial Germ Cell–like Cells in Mice. Science, 2012, 338, 971-975.	12.6	645
3	A Signaling Principle for the Specification of the Germ Cell Lineage in Mice. Cell, 2009, 137, 571-584.	28.9	471
4	Robust InÂVitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells. Cell Stem Cell, 2015, 17, 178-194.	11.1	428
5	Induction of mouse germ-cell fate by transcription factors in vitro. Nature, 2013, 501, 222-226.	27.8	277
6	A Mesodermal Factor, T, Specifies Mouse Germ Cell Fate by Directly Activating Germline Determinants. Developmental Cell, 2013, 27, 516-529.	7.0	206
7	Quantitative Dynamics of Chromatin Remodeling during Germ Cell Specification from Mouse Embryonic Stem Cells. Cell Stem Cell, 2015, 16, 517-532.	11.1	166
8	InÂVitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells. Cell Reports, 2016, 17, 2789-2804.	6.4	136
9	Bone morphogenetic protein and retinoic acid synergistically specify female germ ell fate in mice. EMBO Journal, 2017, 36, 3100-3119.	7.8	105
10	<i>In vitro</i> expansion of mouse primordial germ cellâ€like cells recapitulates an epigenetic blank slate. EMBO Journal, 2017, 36, 1888-1907.	7.8	92
11	InÂvitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells. Cell Stem Cell, 2021, 28, 2167-2179.e9.	11.1	75
12	ZGLP1 is a determinant for the oogenic fate in mice. Science, 2020, 367, .	12.6	69
13	Commitment of Fetal Male Germ Cells to Spermatogonial Stem Cells During Mouse Embryonic Development1. Biology of Reproduction, 2004, 70, 1286-1291.	2.7	53
14	Fertile offspring from sterile sex chromosome trisomic mice. Science, 2017, 357, 932-935.	12.6	45
15	Longâ€term expansion with germline potential of human primordial germ cellâ€like cells <i>inÂvitro</i> . EMBO Journal, 2020, 39, e104929.	7.8	43
16	Induction of the germ cell fate from pluripotent stem cells in cynomolgus monkeysâ€. Biology of Reproduction, 2020, 102, 620-638.	2.7	40
17	Flexible adaptation of male germ cells from female iPSCs of endangered <i>Tokudaia osimensis</i> . Science Advances, 2017, 3, e1602179.	10.3	28
18	The embryonic ontogeny of the gonadal somatic cells in mice and monkeys. Cell Reports, 2021, 35, 109075.	6.4	25

Hiroshi Ohta

#	Article	IF	CITATIONS
19	Persistent Requirement and Alteration of the Key Targets of PRDM1 During Primordial Germ Cell Development in Mice1. Biology of Reproduction, 2016, 94, 7.	2.7	16
20	Principles for the regulation of multiple developmental pathways by a versatile transcriptional factor, BLIMP1. Nucleic Acids Research, 2017, 45, 12152-12169.	14.5	12
21	Cyclosporin A and FGF signaling support the proliferation/survival of mouse primordial germ cell-like cells in vitroâ€. Biology of Reproduction, 2021, 104, 344-360.	2.7	12
22	Nucleome programming is required for the foundation of totipotency in mammalian germline development. EMBO Journal, 2022, 41, .	7.8	9
23	Induction of fetal primary oocytes and the meiotic prophase from mouse pluripotent stem cells. Methods in Cell Biology, 2018, 144, 409-429.	1.1	8
24	Optimized protocol to derive germline stem-cell-like cells from mouse pluripotent stem cells. STAR Protocols, 2022, 3, 101544.	1.2	4