
Isidro Hotzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/914496/publications.pdf Version: 2024-02-01

ISIDDO HOTZEI

#	Article	IF	CITATIONS
1	Domain Organization of Lentiviral and Betaretroviral Surface Envelope Glycoproteins Modeled with AlphaFold. Journal of Virology, 2022, 96, JVI0134821.	3.4	4
2	Deep-Time Structural Evolution of Retroviral and Filoviral Surface Envelope Proteins. Journal of Virology, 2022, 96, e0006322.	3.4	6
3	Extracellular BMP1 is the major proteinase for COOH-terminal proteolysis of type I procollagen in lung fibroblasts. American Journal of Physiology - Cell Physiology, 2021, 320, C162-C174.	4.6	7
4	Antibody semorinemab reduces tau pathology in a transgenic mouse model and engages tau in patients with Alzheimer's disease. Science Translational Medicine, 2021, 13, .	12.4	50
5	Dynamics of heavy chain junctional length biases in antibody repertoires. Communications Biology, 2020, 3, 207.	4.4	14
6	Restricted epitope specificity determined by variable region germline segment pairing in rodent antibody repertoires. MAbs, 2020, 12, 1722541.	5.2	6
7	Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Communications Biology, 2019, 2, 304.	4.4	111
8	lmmune repertoire mining for rapid affinity optimization of mouse monoclonal antibodies. MAbs, 2019, 11, 735-746.	5.2	18
9	Muscle specific kinase (MuSK) activation preserves neuromuscular junctions in the diaphragm but is not sufficient to provide a functional benefit in the SOD1C93A mouse model of ALS. Neurobiology of Disease, 2019, 124, 340-352.	4.4	26
10	Barcoded sequencing workflow for high throughput digitization of hybridoma antibody variable domain sequences. Journal of Immunological Methods, 2018, 455, 88-94.	1.4	18
11	Susceptibility of Antibody CDR Residues to Chemical Modifications Can Be Revealed Prior to Antibody Humanization and Aid in the Lead Selection Process. Molecular Pharmaceutics, 2018, 15, 4529-4537.	4.6	16
12	Structural investigation of human <i>S. aureus-</i> targeting antibodies that bind wall teichoic acid. MAbs, 2018, 10, 1-13.	5.2	23
13	High-throughput screening of antibody variants for chemical stability: identification of deamidation-resistant mutants. MAbs, 2018, 10, 1-11.	5.2	13
14	Membrane-Proximal Epitope Facilitates Efficient T Cell Synapse Formation by Anti-FcRH5/CD3 and Is a Requirement for Myeloma Cell Killing. Cancer Cell, 2017, 31, 383-395.	16.8	220
15	Preclinical Safety Profile of a Depleting Antibody against CRTh2 for Asthma: Well Tolerated Despite Unexpected CRTh2 Expression on Vascular Pericytes in the Central Nervous System and Gastric Mucosa. Toxicological Sciences, 2016, 152, 72-84.	3.1	7
16	Antibody-Mediated Targeting of Tau InÂVivo Does Not Require Effector Function and Microglial Engagement. Cell Reports, 2016, 16, 1690-1700.	6.4	102
17	Automated Affinity Capture and On-Tip Digestion to Accurately Quantitate <i>in Vivo</i> Deamidation of Therapeutic Antibodies. Analytical Chemistry, 2016, 88, 11521-11526.	6.5	29
18	The INNs and outs of antibody nonproprietary names. MAbs, 2016, 8, 1-9.	5.2	48

ISIDRO HOTZEL

#	Article	IF	CITATIONS
19	Depletion of major pathogenic cells in asthma by targeting CRTh2. JCI Insight, 2016, 1, e86689.	5.0	26
20	Anti-FcRH5/CD3 T Cell Dependent Bispecific Antibody (TDB) for the Treatment of Multiple Myeloma. Blood, 2016, 128, 4475-4475.	1.4	4
21	Evaluating the Use of Antibody Variable Region (Fv) Charge as a Risk Assessment Tool for Predicting Typical Cynomolgus Monkey Pharmacokinetics. Journal of Biological Chemistry, 2015, 290, 29732-29741.	3.4	67
22	Modular protein expression by RNA <i>trans</i> -splicing enables flexible expression of antibody formats in mammalian cells from a dual-host phage display vector. Protein Engineering, Design and Selection, 2015, 28, 437-444.	2.1	2
23	An improved and robust DNA immunization method to develop antibodies against extra-cellular loops of multi-transmembrane proteins. MAbs, 2014, 6, 95-107.	5.2	24
24	In vitro affinity maturation of a natural human antibody overcomes a barrier to in vivo affinity maturation. MAbs, 2014, 6, 437-445.	5.2	23
25	A dual host vector for Fab phage display and expression of native IgG in mammalian cells. Protein Engineering, Design and Selection, 2013, 26, 655-662.	2.1	12
26	Inhibitory Mechanism of an Allosteric Antibody Targeting the Glucagon Receptor. Journal of Biological Chemistry, 2013, 288, 36168-36178.	3.4	31
27	Generation and characterization of a unique reagent that recognizes a panel of recombinant human monoclonal antibody therapeutics in the presence of endogenous human IgG. MAbs, 2013, 5, 540-554.	5.2	10
28	A strategy for risk mitigation of antibodies with fast clearance. MAbs, 2012, 4, 753-760.	5.2	200
29	Molecular basis for negative regulation of the glucagon receptor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14393-14398.	7.1	119
30	Efficient production of antibodies against a mammalian integral membrane protein by phage display. Protein Engineering, Design and Selection, 2011, 24, 679-689.	2.1	37
31	The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals. BMC Molecular Biology, 2008, 9, 104.	3.0	169
32	Conservation of inner domain modules in the surface envelope glycoproteins of an ancient rabbit lentivirus and extant lentiviruses and betaretroviruses. Virology, 2008, 372, 201-207.	2.4	8
33	Studies of the Structure of Caprine Arthritis-Encephalitis Virus Surface Envelope Glycoprotein. , 2006, , 391-403.		0
34	TNFα and GM-CSF-induced activation of the CAEV promoter is independent of AP-1. Virology, 2006, 352, 188-199.	2.4	18
35	Mutations increasing exposure of a receptor binding site epitope in the soluble and oligomeric forms of the caprine arthritis-encephalitis lentivirus envelope glycoprotein. Virology, 2005, 339, 261-272.	2.4	8
36	Surface Envelope Glycoprotein Is B-Lymphocyte Immunodominant in Sheep Naturally Infected with Ovine Progressive Pneumonia Virus. Vaccine Journal, 2005, 12, 797-800.	3.1	6

ISIDRO HOTZEL

#	Article	lF	CITATIONS
37	Seven new ovine progressive pneumonia virus (OPPV) field isolates from Dubois Idaho sheep comprise part of OPPV clade II based on surface envelope glycoprotein (SU) sequences. Virus Research, 2004, 102, 215-220.	2.2	16
38	Organization, transcription, and expression of rhoptry associated protein genes in the Babesia bigemina rap-1 locus. Molecular and Biochemical Parasitology, 2003, 127, 101-112.	1.1	53
39	Caprine Arthritis-Encephalitis Virus Envelope Surface Glycoprotein Regions Interacting with the Transmembrane Glycoprotein: Structural and Functional Parallels with Human Immunodeficiency Virus Type 1 gp120. Journal of Virology, 2003, 77, 11578-11587.	3.4	17
40	Conservation of the Human Immunodeficiency Virus Type 1 gp120 V1/V2 Stem/Loop Structure in the Equine Infectious Anemia Virus (EIAV) gp90. AIDS Research and Human Retroviruses, 2003, 19, 923-924.	1.1	15
41	Rapid evolution of two discrete regions of the caprine arthritis-encephalitis virus envelope surface glycoprotein during persistent infection. Virus Research, 2002, 84, 17-25.	2.2	19
42	Differential Receptor Usage of Small Ruminant Lentiviruses in Ovine and Caprine Cells: Host Range but not Cytopathic Phenotype Is Determined by Receptor Usage. Virology, 2002, 301, 21-31.	2.4	24
43	A maedi–visna virus strain K1514 receptor gene is located in sheep chromosome 3p and the syntenic region of human chromosome 2. Journal of General Virology, 2002, 83, 1759-1764.	2.9	7
44	Plasmid DNA encoding caprine interferon gamma inhibits antibody response to caprine arthritis-encephalitis virus (CAEV) surface protein encoded by a co-administered plasmid expressing CAEV env and tat genes. Vaccine, 2001, 19, 3209-3215.	3.8	15
45	Conservation of Human Immunodeficiency Virus Type 1 gp120 Inner-Domain Sequences in Lentivirus and Type A and B Retrovirus Envelope Surface Glycoproteins. Journal of Virology, 2001, 75, 2014-2018.	3.4	17
46	Host Range of Small-Ruminant Lentivirus Cytopathic Variants Determined with a Selectable Caprine Arthritis- Encephalitis Virus Pseudotype System. Journal of Virology, 2001, 75, 7384-7391.	3.4	24
47	Sequence similarity between the envelope surface unit (SU) glycoproteins of primate and small ruminant lentiviruses. Virus Research, 2000, 69, 47-54.	2.2	19
48	Sequence and Functional Analysis of the Intergenic Regions Separating Babesial Rhoptry-Associated Protein-1 (rap-1)Genes. Experimental Parasitology, 1998, 90, 189-194.	1.2	17
49	Structure, sequence, and transcriptional analysis of the Babesia bovis rap-1 multigene locus1Note: Nucleotide sequence data reported in this paper for the 11 kb genomic construct 3.111 has been submitted to the Genbankâ,,¢ data base with accession numbers AF027149, AF028591 and AF028592.1. Molecular and Biochemical Parasitology, 1998, 93, 215-224.	1.1	55
50	Genetic variation in the dimorphic regions of rap-1 genes and rap-1 loci of Babesia bigemina1Note: Nucleotide sequences data reported in this paper are available in the GenBankâ,,¢ data base under the accesion numbers AF014486, AF014757 to AF014768, and AF017284 to AF017298.1. Molecular and Biochemical Parasitology, 1997, 90, 479-489.	1.1	45
51	Characterization of Helper T Cell Responses against Rhoptry-Associated Protein 1 (RAP-1) of Babesial Parasitesa. Annals of the New York Academy of Sciences, 1996, 791, 128-135.	3.8	1
52	Differentiation of classical swine fever virus from ruminant pestiviruses by reverse transcription and polymerase chain reaction (RT-PCR). Veterinary Microbiology, 1996, 48, 373-379.	1.9	23
53	Dimorphic sequences of rap-1 genes encode B and CD4+ T helper lymphocyte epitopes in the Babesia bigemina rhoptry associated protein-1. Molecular and Biochemical Parasitology, 1996, 81, 89-99.	1.1	19
54	DETECTION OF BOVINE RESPIRATORY SYNCYTIAL VIRUS IN CALVES OF RIO GRANDE DO SUL, BRAZIL. Ciencia Rural, 1993, 23, 389-390.	0.5	11

#	Article	IF	CITATIONS
55	Extrachromosomal nucleic acids in bovine babesia. Memorias Do Instituto Oswaldo Cruz, 1992, 87, 101-102.	1.6	1